Skip to content

Commit

Permalink
Decimal: implement Sqrt
Browse files Browse the repository at this point in the history
  • Loading branch information
db47h committed May 19, 2020
1 parent ed7e48b commit cd335d6
Show file tree
Hide file tree
Showing 3 changed files with 117 additions and 4 deletions.
4 changes: 0 additions & 4 deletions decimal.go
Original file line number Diff line number Diff line change
Expand Up @@ -1121,10 +1121,6 @@ func (x *Decimal) Signbit() bool {
return x.neg
}

func (z *Decimal) Sqrt(x *Decimal) *Decimal {
panic("not implemented")
}

// Sub sets z to the rounded difference x-y and returns z.
// Precision, rounding, and accuracy reporting are as for Add.
// Sub panics with ErrNaN if x and y are infinities with equal
Expand Down
7 changes: 7 additions & 0 deletions decimal_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -106,3 +106,10 @@ func BenchmarkDecimal_dnorm(b *testing.B) {
benchU = uint(dnorm(d))
}
}
func BenchmarkDecimal_Sqrt(b *testing.B) {
x := new(Decimal).SetUint64(2)
z := new(Decimal).SetPrec(34)
for i := 0; i < b.N; i++ {
z.Sqrt(x)
}
}
110 changes: 110 additions & 0 deletions decsqrt.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
package decimal

// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

import "math"

var (
three = new(Decimal).SetUint64(3)
two = new(Decimal).SetUint64(2)
)

// Sqrt sets z to the rounded square root of x, and returns it.
//
// If z's precision is 0, it is changed to x's precision before the
// operation. Rounding is performed according to z's precision and
// rounding mode.
//
// The function panics if z < 0. The value of z is undefined in that
// case.
func (z *Decimal) Sqrt(x *Decimal) *Decimal {
if debugDecimal {
x.validate()
}

if z.prec == 0 {
z.prec = x.prec
}

if x.Sign() == -1 {
// following IEEE754-2008 (section 7.2)
panic(ErrNaN{"square root of negative operand"})
}

// handle ±0 and +∞
if x.form != finite {
z.acc = Exact
z.form = x.form
z.neg = x.neg // IEEE754-2008 requires √±0 = ±0
return z
}

// MantExp sets the argument's precision to the receiver's, and
// when z.prec > x.prec this will lower z.prec. Restore it after
// the MantExp call.
prec := z.prec
b := x.MantExp(z)
z.prec = prec

// Compute √(z·10**b) as
// √( z)·10**(½b) if b is even
// √(10z)·10**(⌊½b⌋) if b > 0 is odd
// √(z/10)·10**(⌈½b⌉) if b < 0 is odd
switch b % 2 {
case 0:
// nothing to do
case 1:
z.exp++
case -1:
z.exp--
}
// 0.01 <= z < 10.0

// Unlike with big.Float, solving x² - z = 0 directly is faster only for
// very small precisions (<_DW/2).

// Compute √x (to z.prec precision) by solving
// 1/t² - x = 0
// for t (using Newton's method), and then inverting.

// let
// f(t) = 1/t² - x
// then
// g(t) = f(t)/f'(t) = -½t(1 - xt²)
// and the next guess is given by
// t2 = t - g(t) = ½t(3 - xt²)

u := newDecimal(prec)
v := newDecimal(prec)
xf, _ := x.Float64()
sqi := newDecimal(prec)
sqi.SetPrec(17).SetFloat64(1 / math.Sqrt(xf))
for prec := prec + _DW; sqi.prec < prec; {
sqi.prec *= 2
u.prec = sqi.prec
v.prec = sqi.prec
u.Mul(sqi, sqi) // u = sqi²
u.Mul(x, u) // = x.sqi²
v.Sub(three, u) // v = 3 - x.sqi²
u.Mul(sqi, v) // u = sqi(3 - x.sqi²)
sqi.Quo(u, two) // sqi = ½sqi(3 - x.sqi²)
}
// sqi = 1/√x

// x/√x = √x
z.Mul(x, sqi)

// re-attach halved exponent
return z.SetMantExp(z, b/2)
}

// newDecimal returns a new *Decimal with space for twice the given
// precision.
func newDecimal(prec2 uint32) *Decimal {
z := new(Decimal)
// dec.make ensures the slice length is > 0
z.mant = z.mant.make(int(prec2/_DW) * 2)
return z
}

0 comments on commit cd335d6

Please sign in to comment.