-
-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
117 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,110 @@ | ||
package decimal | ||
|
||
// Copyright 2017 The Go Authors. All rights reserved. | ||
// Use of this source code is governed by a BSD-style | ||
// license that can be found in the LICENSE file. | ||
|
||
import "math" | ||
|
||
var ( | ||
three = new(Decimal).SetUint64(3) | ||
two = new(Decimal).SetUint64(2) | ||
) | ||
|
||
// Sqrt sets z to the rounded square root of x, and returns it. | ||
// | ||
// If z's precision is 0, it is changed to x's precision before the | ||
// operation. Rounding is performed according to z's precision and | ||
// rounding mode. | ||
// | ||
// The function panics if z < 0. The value of z is undefined in that | ||
// case. | ||
func (z *Decimal) Sqrt(x *Decimal) *Decimal { | ||
if debugDecimal { | ||
x.validate() | ||
} | ||
|
||
if z.prec == 0 { | ||
z.prec = x.prec | ||
} | ||
|
||
if x.Sign() == -1 { | ||
// following IEEE754-2008 (section 7.2) | ||
panic(ErrNaN{"square root of negative operand"}) | ||
} | ||
|
||
// handle ±0 and +∞ | ||
if x.form != finite { | ||
z.acc = Exact | ||
z.form = x.form | ||
z.neg = x.neg // IEEE754-2008 requires √±0 = ±0 | ||
return z | ||
} | ||
|
||
// MantExp sets the argument's precision to the receiver's, and | ||
// when z.prec > x.prec this will lower z.prec. Restore it after | ||
// the MantExp call. | ||
prec := z.prec | ||
b := x.MantExp(z) | ||
z.prec = prec | ||
|
||
// Compute √(z·10**b) as | ||
// √( z)·10**(½b) if b is even | ||
// √(10z)·10**(⌊½b⌋) if b > 0 is odd | ||
// √(z/10)·10**(⌈½b⌉) if b < 0 is odd | ||
switch b % 2 { | ||
case 0: | ||
// nothing to do | ||
case 1: | ||
z.exp++ | ||
case -1: | ||
z.exp-- | ||
} | ||
// 0.01 <= z < 10.0 | ||
|
||
// Unlike with big.Float, solving x² - z = 0 directly is faster only for | ||
// very small precisions (<_DW/2). | ||
|
||
// Compute √x (to z.prec precision) by solving | ||
// 1/t² - x = 0 | ||
// for t (using Newton's method), and then inverting. | ||
|
||
// let | ||
// f(t) = 1/t² - x | ||
// then | ||
// g(t) = f(t)/f'(t) = -½t(1 - xt²) | ||
// and the next guess is given by | ||
// t2 = t - g(t) = ½t(3 - xt²) | ||
|
||
u := newDecimal(prec) | ||
v := newDecimal(prec) | ||
xf, _ := x.Float64() | ||
sqi := newDecimal(prec) | ||
sqi.SetPrec(17).SetFloat64(1 / math.Sqrt(xf)) | ||
for prec := prec + _DW; sqi.prec < prec; { | ||
sqi.prec *= 2 | ||
u.prec = sqi.prec | ||
v.prec = sqi.prec | ||
u.Mul(sqi, sqi) // u = sqi² | ||
u.Mul(x, u) // = x.sqi² | ||
v.Sub(three, u) // v = 3 - x.sqi² | ||
u.Mul(sqi, v) // u = sqi(3 - x.sqi²) | ||
sqi.Quo(u, two) // sqi = ½sqi(3 - x.sqi²) | ||
} | ||
// sqi = 1/√x | ||
|
||
// x/√x = √x | ||
z.Mul(x, sqi) | ||
|
||
// re-attach halved exponent | ||
return z.SetMantExp(z, b/2) | ||
} | ||
|
||
// newDecimal returns a new *Decimal with space for twice the given | ||
// precision. | ||
func newDecimal(prec2 uint32) *Decimal { | ||
z := new(Decimal) | ||
// dec.make ensures the slice length is > 0 | ||
z.mant = z.mant.make(int(prec2/_DW) * 2) | ||
return z | ||
} |