Skip to content

dongmean/AL_vs_SubsetSelection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Active Learning is a Strong Baseline for Data Subset Selection (NeurIPS 2022 HITY Workshop, PDF)

by Dongmin Park1, Dimitris Papailiopoulos2, Kangwook Lee2, 3.

1 KAIST, 2 University of Wisconsin-Madison, 3 Krafton

  • Oct 21, 2022: Our work is accepted to HITY Workshop at NeurIPS 2022.

How to run

OUR Active Learning Baseline

Go to the AL/ folder

  • CIFAR10
python3 main.py --gpu 0 --data_path=$your_data_folder --dataset 'CIFAR10' --n-class 10 --model 'ResNet18' \
                        --method 'Uncertainty' --uncertainty 'Margin' --n-query 1000 --epochs 200 --batch-size 128
  • CIFAR100
python3 main.py --gpu 0 --data_path=$your_data_folder --dataset 'CIFAR100' --n-class 100 --model 'ResNet18' \
                        --method 'Uncertainty' --uncertainty 'Margin' --n-query 1000 --epochs 200 --batch-size 128
  • ImageNet30
python3 main.py --gpu 0 --data_path=$your_data_folder --dataset 'ImageNet30' --n-class 30 --model 'ResNet18' \
                        --method 'Uncertainty' --uncertainty 'Margin' --n-query 780 --epochs 200 --batch-size 128

Existing Subset Selection Algorithms: Forgetting, GraNd, kCenterGreedy, Glister, etc

Go to the DeepCore/ folder

  • CIFAR10, CIFAR100, ImageNet50
python3 main.py --data_path=$your_data_folder --datset $dataset --model $arch --selection $selection_algorithm --fraction $target_fraction

*$selection_algorithm must be in ['Uniform', 'Uncertainty', 'Forgetting', 'GraNd', ...], each of which is a class name in deep_core/methods/~~.py

Result

  • CIFAR10

Requirements

torch: +1.3.0
torchvision: 1.7.0
prefetch_generator: 1.0.1
submodlib: 1.1.5
diffdist: 0.1
scikit-learn: 0.24.2
scipy: 1.5.4
ptflops: 0.6.9

Citation

@inproceedings{park2022active,
  title={Active Learning is a Strong Baseline for Data Subset Selection},
  author={Park, Dongmin and Papailiopoulos, Dimitris and Lee, Kangwook},
  booktitle={Has it Trained Yet? NeurIPS 2022 Workshop}
}

References

  • DeepCore library [code] : DeepCore: A Comprehensive Library for Coreset Selection in Deep Learning, Guo et al. 2022.
  • AL library [code] : Meta-Query-Net: Resolving Purity-Informativeness Dilemma in Open-set Active Learning, Park et al. NeurIPS 2022.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published