Active Learning is a Strong Baseline for Data Subset Selection (NeurIPS 2022 HITY Workshop, PDF)
by Dongmin Park1, Dimitris Papailiopoulos2, Kangwook Lee2, 3.
1 KAIST, 2 University of Wisconsin-Madison, 3 Krafton
Oct 21, 2022
: Our work is accepted to HITY Workshop at NeurIPS 2022.
Go to the AL/ folder
- CIFAR10
python3 main.py --gpu 0 --data_path=$your_data_folder --dataset 'CIFAR10' --n-class 10 --model 'ResNet18' \
--method 'Uncertainty' --uncertainty 'Margin' --n-query 1000 --epochs 200 --batch-size 128
- CIFAR100
python3 main.py --gpu 0 --data_path=$your_data_folder --dataset 'CIFAR100' --n-class 100 --model 'ResNet18' \
--method 'Uncertainty' --uncertainty 'Margin' --n-query 1000 --epochs 200 --batch-size 128
- ImageNet30
python3 main.py --gpu 0 --data_path=$your_data_folder --dataset 'ImageNet30' --n-class 30 --model 'ResNet18' \
--method 'Uncertainty' --uncertainty 'Margin' --n-query 780 --epochs 200 --batch-size 128
Go to the DeepCore/ folder
- CIFAR10, CIFAR100, ImageNet50
python3 main.py --data_path=$your_data_folder --datset $dataset --model $arch --selection $selection_algorithm --fraction $target_fraction
*$selection_algorithm must be in ['Uniform', 'Uncertainty', 'Forgetting', 'GraNd', ...], each of which is a class name in deep_core/methods/~~.py
- CIFAR10
torch: +1.3.0
torchvision: 1.7.0
prefetch_generator: 1.0.1
submodlib: 1.1.5
diffdist: 0.1
scikit-learn: 0.24.2
scipy: 1.5.4
ptflops: 0.6.9
@inproceedings{park2022active,
title={Active Learning is a Strong Baseline for Data Subset Selection},
author={Park, Dongmin and Papailiopoulos, Dimitris and Lee, Kangwook},
booktitle={Has it Trained Yet? NeurIPS 2022 Workshop}
}