Skip to content

engineerturph/pythonaifiles

Repository files navigation

Pythonaifiles

it is the file that i hold my python codes from ai lectures/courses that i take.

Linear classifier to do list

  • Split data to test and validation
  • Determine attributes
  • Create attributes array (add 1 attribute at first add later one by one)
  • Do regression(Hinge loss,binarical classification)
  • Create test function
  • Test with validation and train

Attributes

  • Gender(it effects a lot)
  • PyClass(it effects a lot too)
  • Age is ''
  • Has cabin
  • Ticket name(it may affect)
  • Has multiple cabins
  • Fare is between 0-10

Dev Cycle(From Notes)

  • Split data into train/val/test
  • Look data to get intuition
  • Repeat
    • Implement feature/tune hyperparameters
    • Run Learning alg
    • Sanity check train and val error rates weights
    • Look at errors to brainstorm improvements
  • Run on test set to get final error rates(ending)

Kaggle da nasil yapiyolar

  • Kaggle da bence birseyde hata yapiyorlar featurelari olusturup sonra test ediyorlar test ederke featurelari eklemeleri lazim bence.Sonra feature ekledikten sonra yaptiklari yanlis tahminlere de bakmiyorlar.
  • Datanin ai da kullanilacak kisimlarini birakiyorlar.
  • Datayi genelde gorsellestiriyorlar
  • Sonra direk datayi atip regressyonu yapiyorlar.
  • Yasin normal dagilimda su yuzdesinde felan diye de ayirabiliolar.

Dev cycle for kaggle

  • Split data into train/val/test
  • Look data to get intuition(Use graphs find correlations)
  • Repeat
    • Implement feature/tune hyperparameters
    • Run Learning alg
    • Sanity check train and val error rates weights(Use graphs find correlations)
    • Look at errors to brainstorm improvements
  • Run on test set to get final error rates(ending)

Dersler bittikten sonra

-K means++ bak -Artik not yok 18/08

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published