it is the file that i hold my python codes from ai lectures/courses that i take.
- Split data to test and validation
- Determine attributes
- Create attributes array (add 1 attribute at first add later one by one)
- Do regression(Hinge loss,binarical classification)
- Create test function
- Test with validation and train
- Gender(it effects a lot)
- PyClass(it effects a lot too)
- Age is ''
- Has cabin
- Ticket name(it may affect)
- Has multiple cabins
- Fare is between 0-10
- Split data into train/val/test
- Look data to get intuition
- Repeat
- Implement feature/tune hyperparameters
- Run Learning alg
- Sanity check train and val error rates weights
- Look at errors to brainstorm improvements
- Run on test set to get final error rates(ending)
- Kaggle da bence birseyde hata yapiyorlar featurelari olusturup sonra test ediyorlar test ederke featurelari eklemeleri lazim bence.Sonra feature ekledikten sonra yaptiklari yanlis tahminlere de bakmiyorlar.
- Datanin ai da kullanilacak kisimlarini birakiyorlar.
- Datayi genelde gorsellestiriyorlar
- Sonra direk datayi atip regressyonu yapiyorlar.
- Yasin normal dagilimda su yuzdesinde felan diye de ayirabiliolar.
- Split data into train/val/test
- Look data to get intuition(Use graphs find correlations)
- Repeat
- Implement feature/tune hyperparameters
- Run Learning alg
- Sanity check train and val error rates weights(Use graphs find correlations)
- Look at errors to brainstorm improvements
- Run on test set to get final error rates(ending)
-K means++ bak -Artik not yok 18/08