Skip to content

Latest commit

 

History

History

scripts

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 

Setting up

  1. Follow the installation instructions for AgentHive.
  2. Download FK-v1(expert) and DAPG(expert) dataset from the RoboHive dataset collection - RoboSet.

Behavior Cloning Running Instructions

sim_backend=MUJOCO MUJOCO_GL=egl python bc/run_bc_h5.py \
                                    encoder = <visual-encoder> \
                                    cam_name = <camera-name> \
                                    env_name = <env-name> \
                                    from_pixels = True \
                                    data_file = <path-to-dataset>

Currently, three visual encoders are supported: VC1, R3M, RRL. To use the largest model variant of each one set encoder=vc1l/r3m50/rrl50.
To run the experiments using privileged state or proprioceptive-only information, set from_pixels=False and encoder=state/proprio, respectively.

Results

For each of the visual baselines, the results are averaged over 3 camera angles (except for the Robel Suite, where all the camera angles are used to avoid partial observability), 3 seeds, and 25 evaluation trajectories.

Benchmark Suite Dataset Type Camera Angles Seeds
Kitchen (FK-v1) FK-v1(expert) left_cam,right_cam,top_cam 1,2,3
Kitchen (FK-v1) FK-v1(human) left_cam,right_cam,top_cam 1,2,3
Hand Manipulation Suite (HMS) HMS(Human) view_1,view_4,vil_camera 1,2,3
Robel Suite ROBEL(Expert) [A:headCam,A:leftCam,A:tailCam,A:rightCam] 1,2,3