- Follow the installation instructions for AgentHive.
- Download FK-v1(expert) and DAPG(expert) dataset from the RoboHive dataset collection - RoboSet.
sim_backend=MUJOCO MUJOCO_GL=egl python bc/run_bc_h5.py \
encoder = <visual-encoder> \
cam_name = <camera-name> \
env_name = <env-name> \
from_pixels = True \
data_file = <path-to-dataset>
Currently, three visual encoders are supported: VC1, R3M, RRL. To use the largest model variant of each one set encoder=vc1l/r3m50/rrl50
.
To run the experiments using privileged state or proprioceptive-only information, set from_pixels=False
and encoder=state/proprio
, respectively.
For each of the visual baselines, the results are averaged over 3 camera angles (except for the Robel Suite, where all the camera angles are used to avoid partial observability), 3 seeds, and 25 evaluation trajectories.
Benchmark Suite | Dataset Type | Camera Angles | Seeds |
---|---|---|---|
Kitchen (FK-v1) | FK-v1(expert) | left_cam ,right_cam ,top_cam |
1 ,2 ,3 |
Kitchen (FK-v1) | FK-v1(human) | left_cam ,right_cam ,top_cam |
1 ,2 ,3 |
Hand Manipulation Suite (HMS) | HMS(Human) | view_1 ,view_4 ,vil_camera |
1 ,2 ,3 |
Robel Suite | ROBEL(Expert) | [A:headCam,A:leftCam,A:tailCam,A:rightCam] |
1 ,2 ,3 |