forked from cure-lab/MagicDrive
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added model convert: accelerate checkpoint -> pytorch model
- Loading branch information
Showing
7 changed files
with
164 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
defaults: | ||
- config | ||
- _self_ | ||
|
||
log_root_prefix: ./magicdrive-log/inference_test_demo | ||
|
||
runner: | ||
validation_batch_size: 10 | ||
|
||
resume_on_exists: false | ||
show_box: true | ||
|
||
fix_seed_for_every_generation: False |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
defaults: | ||
- _self_ | ||
- model: SDv1.5mv_rawbox | ||
- dataset: Nuscenes_cache | ||
- accelerator: default | ||
- runner: default | ||
|
||
task_id: "0.0.0" | ||
log_root_prefix: ./magicdrive-log/model_convert | ||
projname: ${model.name} | ||
hydra: | ||
run: | ||
dir: ${log_root_prefix}/${projname}_${now:%Y-%m-%d}_${now:%H-%M}_${task_id} | ||
output_subdir: hydra | ||
|
||
try_run: false | ||
debug: false | ||
log_root: ??? | ||
init_method: env:// | ||
seed: 42 | ||
fix_seed_within_batch: false | ||
|
||
resume_from_checkpoint: null | ||
resume_reset_scheduler: false | ||
validation_only: false | ||
# num_gpus: 1 | ||
# num_workers: 4 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
#!/bin/bash | ||
|
||
#python tools/testhkkim.py resume_from_checkpoint=./pretrained/SDv1.5mv-rawbox_2023-09-07_18-39_224x400 | ||
|
||
#python tools/testhkkim.py resume_from_checkpoint=/home/hyunkoo/DATA/ssd8tb/Journal/MagicDrive/pretrained/SDv1.5mv-rawbox_2023-09-07_18-39_224x400 | ||
|
||
python tools/inference_test_hkkim.py resume_from_checkpoint=/home/hyunkoo/DATA/ssd8tb/Journal/MagicDrive/magicdrive-log/model_convert/SDv1.5mv-rawbox_2024-12-17_23-16_224x400 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
accelerate launch --config_file /home/hyunkoo/DATA/ssd8tb/Journal/MagicDrive/configs/accelerator/accelerate_config_1gpu.yaml \ | ||
tools/save_pytorch_model_from_accelerate_checkpoint.py \ | ||
resume_from_checkpoint=/home/hyunkoo/DATA/ssd8tb/Journal/MagicDrive/magicdrive-log/SDv1.5mv-rawbox_2024-12-13_21-38_224x400/checkpoint-160000 \ | ||
+exp=224x400 runner=2gpus |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,111 @@ | ||
import os | ||
import sys | ||
import logging | ||
from dotenv import load_dotenv | ||
load_dotenv('/home/hyunkoo/DATA/ssd8tb/Journal/MagicDrive/.env') | ||
|
||
print(os.environ['HF_HOME']) | ||
|
||
import warnings | ||
from shapely.errors import ShapelyDeprecationWarning | ||
warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning) | ||
|
||
import hydra | ||
from hydra.core.hydra_config import HydraConfig | ||
from omegaconf import DictConfig, OmegaConf | ||
import torch | ||
|
||
from mmdet3d.datasets import build_dataset | ||
from accelerate import Accelerator, DistributedDataParallelKwargs | ||
from accelerate.utils import set_seed | ||
|
||
sys.path.append(".") # 필요하다면 적절히 수정 | ||
import magicdrive.dataset.pipeline | ||
from magicdrive.misc.common import load_module | ||
|
||
|
||
def set_logger(global_rank, logdir): | ||
if global_rank == 0: | ||
return | ||
logging.info(f"reset logger for {global_rank}") | ||
root = logging.getLogger() | ||
root.handlers.clear() | ||
root.setLevel(logging.DEBUG) | ||
formatter = logging.Formatter("[%(asctime)s][%(name)s][%(levelname)s] - %(message)s") | ||
file_path = os.path.join(logdir, f"train.{global_rank}.log") | ||
handler = logging.FileHandler(file_path) | ||
handler.setFormatter(formatter) | ||
root.addHandler(handler) | ||
|
||
|
||
@hydra.main(version_base=None, config_path="../configs", config_name="model_convert_hkkim_config") | ||
def main(cfg: DictConfig): | ||
# 기존과 동일한 환경 설정 | ||
logging.getLogger().setLevel(logging.DEBUG) | ||
for handler in logging.getLogger().handlers: | ||
if isinstance(handler, logging.FileHandler) or cfg.try_run: | ||
handler.setLevel(logging.DEBUG) | ||
else: | ||
handler.setLevel(logging.INFO) | ||
logging.getLogger("shapely.geos").setLevel(logging.WARN) | ||
logging.getLogger("asyncio").setLevel(logging.INFO) | ||
logging.getLogger("accelerate.tracking").setLevel(logging.INFO) | ||
logging.getLogger("numba").setLevel(logging.WARN) | ||
logging.getLogger("PIL").setLevel(logging.WARN) | ||
logging.getLogger("matplotlib").setLevel(logging.WARN) | ||
|
||
setattr(cfg, "log_root", HydraConfig.get().runtime.output_dir) | ||
|
||
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | ||
accelerator = Accelerator( | ||
gradient_accumulation_steps=cfg.accelerator.gradient_accumulation_steps, | ||
mixed_precision=cfg.accelerator.mixed_precision, | ||
log_with=cfg.accelerator.report_to, | ||
project_dir=cfg.log_root, | ||
kwargs_handlers=[ddp_kwargs], | ||
) | ||
set_logger(accelerator.process_index, cfg.log_root) | ||
set_seed(cfg.seed) | ||
|
||
# dataset 필요 없다면 생략 가능 (단, runner 초기화에 필요하다면 남겨둬야 함) | ||
train_dataset = build_dataset( | ||
OmegaConf.to_container(cfg.dataset.data.train, resolve=True) | ||
) | ||
val_dataset = build_dataset( | ||
OmegaConf.to_container(cfg.dataset.data.val, resolve=True) | ||
) | ||
|
||
# runner 초기화 | ||
runner_cls = load_module(cfg.model.runner_module) | ||
runner = runner_cls(cfg, accelerator, train_dataset, val_dataset) | ||
runner.set_optimizer_scheduler() | ||
runner.prepare_device() | ||
|
||
# 여기서 이미 학습 완료된 체크포인트를 로드 | ||
# cfg.resume_from_checkpoint 를 통해 체크포인트 경로를 받아온다고 가정 | ||
if not cfg.resume_from_checkpoint: | ||
raise ValueError("resume_from_checkpoint 경로를 지정해주세요.") | ||
load_path = cfg.resume_from_checkpoint | ||
accelerator.load_state(load_path) | ||
|
||
# unwrap_model 로 모델 추출 | ||
controlnet = accelerator.unwrap_model(runner.controlnet) | ||
|
||
# 모델 저장 (controlnet_dir은 original code에서 cfg.model.controlnet_dir 로 지정) | ||
save_dir = os.path.join(cfg.log_root, "controlnet") | ||
os.makedirs(save_dir, exist_ok=True) | ||
controlnet.save_pretrained(save_dir) | ||
logging.info(f"Model saved to: {save_dir}") | ||
|
||
# unwrap_model 로 모델 추출 | ||
unet = accelerator.unwrap_model(runner.unet) | ||
|
||
# 모델 저장 (controlnet_dir은 original code에서 cfg.model.controlnet_dir 로 지정) | ||
save_dir = os.path.join(cfg.log_root, "unet") | ||
os.makedirs(save_dir, exist_ok=True) | ||
unet.save_pretrained(save_dir) | ||
logging.info(f"Model saved to: {save_dir}") | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |