This repository has been archived by the owner on Dec 18, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathtest_lseg.py
436 lines (399 loc) · 13.4 KB
/
test_lseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
import os
import argparse
import numpy as np
from tqdm import tqdm
from collections import OrderedDict
import torch
import torch.nn.functional as F
from torch.utils import data
import torchvision.transforms as transform
from torch.nn.parallel.scatter_gather import gather
import encoding.utils as utils
from encoding.nn import SegmentationLosses, SyncBatchNorm
from encoding.parallel import DataParallelModel, DataParallelCriterion
from encoding.datasets import test_batchify_fn
from encoding.models.sseg import BaseNet
from modules.lseg_module import LSegModule
from utils import Resize
import cv2
import math
import types
import functools
import torchvision.transforms as torch_transforms
import copy
import itertools
from PIL import Image
import matplotlib.pyplot as plt
import clip
import matplotlib as mpl
import matplotlib.colors as mplc
import matplotlib.figure as mplfigure
import matplotlib.patches as mpatches
from matplotlib.backends.backend_agg import FigureCanvasAgg
from data import get_dataset
from additional_utils.encoding_models import MultiEvalModule as LSeg_MultiEvalModule
import torchvision.transforms as transforms
class Options:
def __init__(self):
parser = argparse.ArgumentParser(description="PyTorch Segmentation")
# model and dataset
parser.add_argument(
"--model", type=str, default="encnet", help="model name (default: encnet)"
)
parser.add_argument(
"--backbone",
type=str,
default="clip_vitl16_384",
help="backbone name (default: resnet50)",
)
parser.add_argument(
"--dataset",
type=str,
default="ade20k",
help="dataset name (default: pascal12)",
)
parser.add_argument(
"--workers", type=int, default=16, metavar="N", help="dataloader threads"
)
parser.add_argument(
"--base-size", type=int, default=520, help="base image size"
)
parser.add_argument(
"--crop-size", type=int, default=480, help="crop image size"
)
parser.add_argument(
"--train-split",
type=str,
default="train",
help="dataset train split (default: train)",
)
# training hyper params
parser.add_argument(
"--aux", action="store_true", default=False, help="Auxilary Loss"
)
parser.add_argument(
"--se-loss",
action="store_true",
default=False,
help="Semantic Encoding Loss SE-loss",
)
parser.add_argument(
"--se-weight", type=float, default=0.2, help="SE-loss weight (default: 0.2)"
)
parser.add_argument(
"--batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
training (default: auto)",
)
parser.add_argument(
"--test-batch-size",
type=int,
default=16,
metavar="N",
help="input batch size for \
testing (default: same as batch size)",
)
# cuda, seed and logging
parser.add_argument(
"--no-cuda",
action="store_true",
default=False,
help="disables CUDA training",
)
parser.add_argument(
"--seed", type=int, default=1, metavar="S", help="random seed (default: 1)"
)
parser.add_argument(
"--weights", type=str, default=None, help="checkpoint to test"
)
parser.add_argument(
"--eval", action="store_true", default=False, help="evaluating mIoU"
)
parser.add_argument(
"--export",
type=str,
default=None,
help="put the path to resuming file if needed",
)
parser.add_argument(
"--acc-bn",
action="store_true",
default=False,
help="Re-accumulate BN statistics",
)
parser.add_argument(
"--test-val",
action="store_true",
default=False,
help="generate masks on val set",
)
parser.add_argument(
"--no-val",
action="store_true",
default=False,
help="skip validation during training",
)
parser.add_argument(
"--module",
default='lseg',
help="select model definition",
)
# test option
parser.add_argument(
"--data-path", type=str, default=None, help="path to test image folder"
)
parser.add_argument(
"--no-scaleinv",
dest="scale_inv",
default=True,
action="store_false",
help="turn off scaleinv layers",
)
parser.add_argument(
"--widehead", default=False, action="store_true", help="wider output head"
)
parser.add_argument(
"--widehead_hr",
default=False,
action="store_true",
help="wider output head",
)
parser.add_argument(
"--ignore_index",
type=int,
default=-1,
help="numeric value of ignore label in gt",
)
parser.add_argument(
"--label_src",
type=str,
default="default",
help="how to get the labels",
)
parser.add_argument(
"--jobname",
type=str,
default="default",
help="select which dataset",
)
parser.add_argument(
"--no-strict",
dest="strict",
default=True,
action="store_false",
help="no-strict copy the model",
)
parser.add_argument(
"--arch_option",
type=int,
default=0,
help="which kind of architecture to be used",
)
parser.add_argument(
"--block_depth",
type=int,
default=0,
help="how many blocks should be used",
)
parser.add_argument(
"--activation",
choices=['lrelu', 'tanh'],
default="lrelu",
help="use which activation to activate the block",
)
self.parser = parser
def parse(self):
args = self.parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
print(args)
return args
def test(args):
module = LSegModule.load_from_checkpoint(
checkpoint_path=args.weights,
data_path=args.data_path,
dataset=args.dataset,
backbone=args.backbone,
aux=args.aux,
num_features=256,
aux_weight=0,
se_loss=False,
se_weight=0,
base_lr=0,
batch_size=1,
max_epochs=0,
ignore_index=args.ignore_index,
dropout=0.0,
scale_inv=args.scale_inv,
augment=False,
no_batchnorm=False,
widehead=args.widehead,
widehead_hr=args.widehead_hr,
map_locatin="cpu",
arch_option=args.arch_option,
strict=args.strict,
block_depth=args.block_depth,
activation=args.activation,
)
input_transform = module.val_transform
num_classes = module.num_classes
# dataset
testset = get_dataset(
args.dataset,
root=args.data_path,
split="val",
mode="testval",
transform=input_transform,
)
# dataloader
loader_kwargs = (
{"num_workers": args.workers, "pin_memory": True} if args.cuda else {}
)
test_data = data.DataLoader(
testset,
batch_size=args.test_batch_size,
drop_last=False,
shuffle=False,
collate_fn=test_batchify_fn,
**loader_kwargs
)
if isinstance(module.net, BaseNet):
model = module.net
else:
model = module
model = model.eval()
model = model.cpu()
print(model)
if args.acc_bn:
from encoding.utils.precise_bn import update_bn_stats
data_kwargs = {
"transform": input_transform,
"base_size": args.base_size,
"crop_size": args.crop_size,
}
trainset = get_dataset(
args.dataset, split=args.train_split, mode="train", **data_kwargs
)
trainloader = data.DataLoader(
ReturnFirstClosure(trainset),
root=args.data_path,
batch_size=args.batch_size,
drop_last=True,
shuffle=True,
**loader_kwargs
)
print("Reseting BN statistics")
model.cuda()
update_bn_stats(model, trainloader)
if args.export:
torch.save(model.state_dict(), args.export + ".pth")
return
scales = (
[0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25]
if args.dataset == "citys"
else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
)
evaluator = LSeg_MultiEvalModule(
model, num_classes, scales=scales, flip=True
).cuda()
evaluator.eval()
metric = utils.SegmentationMetric(testset.num_class)
tbar = tqdm(test_data)
f = open("logs/log_test_{}_{}.txt".format(args.jobname, args.dataset), "a+")
per_class_iou = np.zeros(testset.num_class)
cnt = 0
for i, (image, dst) in enumerate(tbar):
if args.eval:
with torch.no_grad():
if False:
sample = {"image": image[0].cpu().permute(1, 2, 0).numpy()}
out = torch.zeros(
1, testset.num_class, image[0].shape[1], image[0].shape[2]
).cuda()
H, W = image[0].shape[1], image[0].shape[2]
for scale in scales:
long_size = int(math.ceil(520 * scale))
if H > W:
height = long_size
width = int(1.0 * W * long_size / H + 0.5)
short_size = width
else:
width = long_size
height = int(1.0 * H * long_size / W + 0.5)
short_size = height
rs = Resize(
width,
height,
resize_target=False,
keep_aspect_ratio=True,
ensure_multiple_of=32,
resize_method="minimal",
image_interpolation_method=cv2.INTER_AREA,
)
inf_image = (
torch.from_numpy(rs(sample)["image"])
.cuda()
.permute(2, 0, 1)
.unsqueeze(0)
)
inf_image = torch.cat((inf_image, torch.fliplr(inf_image)), 0)
try:
pred = model(inf_image)
except:
print(H, W, sz, i)
exit()
pred0 = F.softmax(pred[0], dim=1)
pred1 = F.softmax(pred[1], dim=1)
pred = pred0 + 0.2 * pred1
out += F.interpolate(
pred.sum(0, keepdim=True),
(out.shape[2], out.shape[3]),
mode="bilinear",
align_corners=True,
)
predicts = [out]
else:
predicts = evaluator.parallel_forward(image)
metric.update(dst, predicts)
pixAcc, mIoU = metric.get()
_, _, total_inter, total_union = metric.get_all()
per_class_iou += 1.0 * total_inter / (np.spacing(1) + total_union)
cnt+=1
tbar.set_description("pixAcc: %.4f, mIoU: %.4f" % (pixAcc, mIoU))
else:
with torch.no_grad():
outputs = evaluator.parallel_forward(image)
predicts = [
testset.make_pred(torch.max(output, 1)[1].cpu().numpy())
for output in outputs
]
# output folder
outdir = "outdir_ours"
if not os.path.exists(outdir):
os.makedirs(outdir)
for predict, impath in zip(predicts, dst):
mask = utils.get_mask_pallete(predict, args.dataset)
outname = os.path.splitext(impath)[0] + ".png"
mask.save(os.path.join(outdir, outname))
if args.eval:
each_classes_iou = per_class_iou/cnt
print("pixAcc: %.4f, mIoU: %.4f" % (pixAcc, mIoU))
print(each_classes_iou)
f.write("dataset {} ==> pixAcc: {:.4f}, mIoU: {:.4f}\n".format(args.dataset, pixAcc, mIoU))
for per_iou in each_classes_iou: f.write('{:.4f}, '.format(per_iou))
f.write('\n')
class ReturnFirstClosure(object):
def __init__(self, data):
self._data = data
def __len__(self):
return len(self._data)
def __getitem__(self, idx):
outputs = self._data[idx]
return outputs[0]
if __name__ == "__main__":
args = Options().parse()
torch.manual_seed(args.seed)
args.test_batch_size = torch.cuda.device_count()
test(args)