Skip to content

justas145/CS4245_cv_for_lectures

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Action Recognition using YOLO and Feature Extraction

This repository contains an implementation for action recognition using the YOLO object detection algorithm, and feature extraction using either OSNet or face recognition.

Dependencies

  • scikit-learn
  • PIL
  • ultralytics
  • numpy
  • opencv-python
  • argparse
  • time

How to Use

  1. Clone the repository
  2. Install the required dependencies
  3. Run the main script, main.py, with your desired arguments.

Example Usage:

python main.py -method 'osnet' -detection_confidence 0.8 -num_saved_images 30 -verification_time 2 -threshold_coefficient 0.8 -input_video 'test_videos/test_video3.mp4' 

Arguments
-method: method to use for feature extraction (default: 'osnet')
-detection_confidence: detection confidence threshold (default: 0.75)
-num_saved_images: number of saved images for the target person (default: 30)
-verification_time: time interval between verifications (default: 3)
-threshold_coefficient: coefficient for similarity threshold (default: 0.9)
-save_frames: save frames with the title of similarity score and yes/no for verification (default: False)
-input_video: input video file

### Results_analysis.ipynb
This notebook contains the results of the experiments conducted on the dataset. It also contains the code for the plots and tables in the report.

### Blog Post
See the blog post here: https://medium.com/@justasand1/project-title-bf3dff25a791

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published