Proximity Graph Networks (torch_pgn) is a pytorch toolkit allowing for the modular application of multiple different encoder architectures to cheminformatic tasks centered around protein-ligand complexes. Alpha version of documentation is available at: https://torch-pgn.readthedocs.io/en/latest/index.html.
torch-pgn either be installed from PyPi using the pip command or from source. We assume that all users are using conda, if you do not have conda, please install Miniconda from https://conda.io/miniconda.html.
conda create --name torch_pgn python=3.7
conda activate torch_pgn
pip install torch_pgn
conda install pytorch-sparse -c pyg
conda install -c conda-forge openbabel
conda create --name torch_pgn python=3.7
conda activate torch_pgn
conda install pytorch==1.13.1 pytorch-cuda=11.7 -c pytorch -c nvidia
conda install pyg -c pyg
conda install pytorch-sparse -c pyg
conda install -c conda-forge openbabel
pip install torch_pgn
git clone https://github.com/keiserlab/torch_pgn/torch_pgn.git
cd torch_pgn
conda env create -f environment.yml
conda activate torch_pgn
pip install -e