generated from langchain-ai/integration-repo-template
-
Notifications
You must be signed in to change notification settings - Fork 122
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
creating the new DemoChatBedrock POC.
- Loading branch information
Vishal Patil
committed
Jan 23, 2025
1 parent
ac7ec07
commit 7d8c9c8
Showing
5 changed files
with
866 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
from langchain_aws.chat_model_adapter.demo_chat_adapter import ( | ||
BedrockClaudeAdapter, | ||
ModelAdapter, | ||
) | ||
|
||
__all__ = ["ModelAdapter", "BedrockClaudeAdapter"] |
325 changes: 325 additions & 0 deletions
325
libs/aws/langchain_aws/chat_model_adapter/demo_chat_adapter.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,325 @@ | ||
from typing import ( | ||
Any, | ||
Iterator, | ||
List, | ||
Optional, | ||
Sequence, | ||
Union, | ||
Dict, | ||
Callable, | ||
Literal, | ||
Type, | ||
TypeVar, | ||
Tuple, | ||
cast, | ||
) | ||
|
||
from langchain_core.language_models import BaseChatModel, LanguageModelInput | ||
from langchain_core.callbacks import CallbackManagerForLLMRun | ||
from langchain_core.messages import ( | ||
BaseMessage, | ||
AIMessage, | ||
AIMessageChunk, | ||
HumanMessage, | ||
SystemMessage, | ||
ToolMessage, | ||
ChatMessage, | ||
) | ||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult | ||
from langchain_core.runnables import Runnable | ||
from langchain_core.tools import BaseTool | ||
from langchain_core.utils.pydantic import TypeBaseModel | ||
from pydantic import BaseModel | ||
|
||
from abc import ABC, abstractmethod | ||
import re | ||
|
||
# ModelAdapter might also need access to the data that the wrapper ChatModel class has | ||
# for example, the provider or custom inputs passed in by the user | ||
|
||
|
||
class ModelAdapter(ABC): | ||
"""Abstract base class for model-specific adaptation strategies""" | ||
|
||
@abstractmethod | ||
def convert_messages_to_payload( | ||
self, | ||
messages: List[BaseMessage], | ||
stop: Optional[List[str]] = None, | ||
**kwargs: Any, | ||
) -> Any: | ||
"""Convert LangChain messages to model-specific payload""" | ||
pass | ||
|
||
@abstractmethod | ||
def convert_response_to_chat_result(self, response: Any) -> ChatResult: | ||
"""Convert model-specific response to LangChain ChatResult""" | ||
pass | ||
|
||
@abstractmethod | ||
def convert_stream_response_to_chunks( | ||
self, response: Any | ||
) -> Iterator[ChatGenerationChunk]: | ||
"""Convert model-specific stream response to LangChain chunks""" | ||
pass | ||
|
||
@abstractmethod | ||
def format_tools( | ||
self, tools: Sequence[Union[Dict[str, Any], TypeBaseModel, Callable, BaseTool]] | ||
) -> Any: | ||
"""Format tools for the specific model""" | ||
pass | ||
|
||
|
||
# Example concrete implementation for a specific model | ||
class BedrockClaudeAdapter(ModelAdapter): | ||
message_type_lookups = { | ||
"human": "user", | ||
"ai": "assistant", | ||
"AIMessageChunk": "assistant", | ||
"HumanMessageChunk": "user", | ||
} | ||
|
||
def convert_messages_to_payload( | ||
self, | ||
messages: List[BaseMessage], | ||
stop: Optional[List[str]] = None, | ||
**kwargs: Any, | ||
) -> Dict[str, Any]: | ||
# Specific implementation for converting LC messages to Claude payload | ||
response_msg_with_provider = { | ||
"messages": [self._convert_message(msg) for msg in messages], | ||
"max_tokens": kwargs.get("max_tokens", 1000), | ||
"stop_sequences": stop or [], | ||
} | ||
return self.convert_messages_to_prompt_anthropic(messages=messages) | ||
|
||
def _convert_message(self, msg: BaseMessage) -> Dict[str, str]: | ||
# Convert LangChain message to Claude-specific format | ||
role_map = {"human": "user", "ai": "assistant", "system": "system"} | ||
return { | ||
"role": role_map.get(msg.type, "user"), | ||
# This is just a string. A dict is expected with "type" and "text" fields | ||
"content": msg.content, | ||
} | ||
|
||
def convert_response_to_chat_result(self, response: Any) -> ChatResult: | ||
pass | ||
|
||
def convert_stream_response_to_chunks( | ||
self, response: Any | ||
) -> Iterator[ChatGenerationChunk]: | ||
"""Convert model-specific stream response to LangChain chunks""" | ||
pass | ||
|
||
def format_tools( | ||
self, tools: Sequence[Union[Dict[str, Any], TypeBaseModel, Callable, BaseTool]] | ||
) -> Any: | ||
"""Format tools for the specific model""" | ||
pass | ||
|
||
def _format_image(self, image_url: str) -> Dict: | ||
""" | ||
Formats an image of format data:image/jpeg;base64,{b64_string} | ||
to a dict for anthropic api | ||
{ | ||
"type": "base64", | ||
"media_type": "image/jpeg", | ||
"data": "/9j/4AAQSkZJRg...", | ||
} | ||
And throws an error if it's not a b64 image | ||
""" | ||
regex = r"^data:(?P<media_type>image/.+);base64,(?P<data>.+)$" | ||
match = re.match(regex, image_url) | ||
if match is None: | ||
raise ValueError( | ||
"Anthropic only supports base64-encoded images currently." | ||
" Example: data:image/png;base64,'/9j/4AAQSk'..." | ||
) | ||
return { | ||
"type": "base64", | ||
"media_type": match.group("media_type"), | ||
"data": match.group("data"), | ||
} | ||
|
||
def _merge_messages( | ||
self, | ||
messages: Sequence[BaseMessage], | ||
) -> List[Union[SystemMessage, AIMessage, HumanMessage]]: | ||
"""Merge runs of human/tool messages into single human messages with content blocks.""" # noqa: E501 | ||
merged: list = [] | ||
for curr in messages: | ||
curr = curr.model_copy(deep=True) | ||
if isinstance(curr, ToolMessage): | ||
if isinstance(curr.content, list) and all( | ||
isinstance(block, dict) and block.get("type") == "tool_result" | ||
for block in curr.content | ||
): | ||
curr = HumanMessage(curr.content) # type: ignore[misc] | ||
else: | ||
curr = HumanMessage( # type: ignore[misc] | ||
[ | ||
{ | ||
"type": "tool_result", | ||
"content": curr.content, | ||
"tool_use_id": curr.tool_call_id, | ||
} | ||
] | ||
) | ||
last = merged[-1] if merged else None | ||
if isinstance(last, HumanMessage) and isinstance(curr, HumanMessage): | ||
if isinstance(last.content, str): | ||
new_content: List = [{"type": "text", "text": last.content}] | ||
else: | ||
new_content = last.content | ||
if isinstance(curr.content, str): | ||
new_content.append({"type": "text", "text": curr.content}) | ||
else: | ||
new_content.extend(curr.content) | ||
last.content = new_content | ||
else: | ||
merged.append(curr) | ||
return merged | ||
|
||
def format_anthropic_messages( | ||
self, | ||
messages: List[BaseMessage], | ||
) -> Tuple[Optional[str], List[Dict]]: | ||
"""Format messages for anthropic.""" | ||
system: Optional[str] = None | ||
formatted_messages: List[Dict] = [] | ||
|
||
merged_messages = self._merge_messages(messages) | ||
for i, message in enumerate(merged_messages): | ||
if message.type == "system": | ||
if i != 0: | ||
raise ValueError( | ||
"System message must be at beginning of message list." | ||
) | ||
if not isinstance(message.content, str): | ||
raise ValueError( | ||
"System message must be a string, " | ||
f"instead was: {type(message.content)}" | ||
) | ||
system = message.content | ||
continue | ||
|
||
role = self.message_type_lookups[message.type] | ||
content: Union[str, List] | ||
|
||
if not isinstance(message.content, str): | ||
# parse as dict | ||
assert isinstance( | ||
message.content, list | ||
), "Anthropic message content must be str or list of dicts" | ||
|
||
# populate content | ||
content = [] | ||
for item in message.content: | ||
if isinstance(item, str): | ||
content.append({"type": "text", "text": item}) | ||
elif isinstance(item, dict): | ||
if "type" not in item: | ||
raise ValueError("Dict content item must have a type key") | ||
elif item["type"] == "image_url": | ||
# convert format | ||
source = self._format_image(item["image_url"]["url"]) | ||
content.append({"type": "image", "source": source}) | ||
elif item["type"] == "tool_use": | ||
# If a tool_call with the same id as a tool_use content | ||
# block exists, the tool_call is preferred. | ||
if isinstance(message, AIMessage) and item["id"] in [ | ||
tc["id"] for tc in message.tool_calls | ||
]: | ||
overlapping = [ | ||
tc | ||
for tc in message.tool_calls | ||
if tc["id"] == item["id"] | ||
] | ||
# content.extend( | ||
# _lc_tool_calls_to_anthropic_tool_use_blocks(overlapping) | ||
# ) | ||
else: | ||
item.pop("text", None) | ||
content.append(item) | ||
elif item["type"] == "text": | ||
text = item.get("text", "") | ||
# Only add non-empty strings for now as empty ones are not | ||
# accepted. | ||
# https://github.com/anthropics/anthropic-sdk-python/issues/461 | ||
if text.strip(): | ||
content.append({"type": "text", "text": text}) | ||
else: | ||
content.append(item) | ||
else: | ||
raise ValueError( | ||
f"Content items must be str or dict, instead was: {type(item)}" | ||
) | ||
elif isinstance(message, AIMessage) and message.tool_calls: | ||
content = ( | ||
[] | ||
if not message.content | ||
else [{"type": "text", "text": message.content}] | ||
) | ||
# Note: Anthropic can't have invalid tool calls as presently defined, | ||
# since the model already returns dicts args not JSON strings, and invalid | ||
# tool calls are those with invalid JSON for args. | ||
# content += _lc_tool_calls_to_anthropic_tool_use_blocks(message.tool_calls) | ||
else: | ||
content = message.content | ||
|
||
formatted_messages.append({"role": role, "content": content}) | ||
return system, formatted_messages | ||
|
||
def _convert_one_message_to_text_anthropic( | ||
self, | ||
message: BaseMessage, | ||
human_prompt: str, | ||
ai_prompt: str, | ||
) -> str: | ||
content = cast(str, message.content) | ||
if isinstance(message, ChatMessage): | ||
message_text = f"\n\n{message.role.capitalize()}: {content}" | ||
elif isinstance(message, HumanMessage): | ||
message_text = f"{human_prompt} {content}" | ||
elif isinstance(message, AIMessage): | ||
message_text = f"{ai_prompt} {content}" | ||
elif isinstance(message, SystemMessage): | ||
message_text = content | ||
else: | ||
raise ValueError(f"Got unknown type {message}") | ||
return message_text | ||
|
||
def convert_messages_to_prompt_anthropic( | ||
self, | ||
messages: List[BaseMessage], | ||
*, | ||
human_prompt: str = "\n\nHuman:", | ||
ai_prompt: str = "\n\nAssistant:", | ||
) -> str: | ||
"""Format a list of messages into a full prompt for the Anthropic model | ||
Args: | ||
messages (List[BaseMessage]): List of BaseMessage to combine. | ||
human_prompt (str, optional): Human prompt tag. Defaults to "\n\nHuman:". | ||
ai_prompt (str, optional): AI prompt tag. Defaults to "\n\nAssistant:". | ||
Returns: | ||
str: Combined string with necessary human_prompt and ai_prompt tags. | ||
""" | ||
|
||
messages = messages.copy() # don't mutate the original list | ||
if not isinstance(messages[-1], AIMessage): | ||
messages.append(AIMessage(content="")) | ||
|
||
text = "".join( | ||
self._convert_one_message_to_text_anthropic( | ||
message, human_prompt, ai_prompt | ||
) | ||
for message in messages | ||
) | ||
|
||
# trim off the trailing ' ' that might come from the "Assistant: " | ||
return text.rstrip() | ||
|
||
# Implement other abstract methods similarly... |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
from langchain_aws.chat_models.bedrock import ChatBedrock | ||
from langchain_aws.chat_models.bedrock_converse import ChatBedrockConverse | ||
from langchain_aws.chat_models.demo_chat import DemoChatBedrock | ||
|
||
__all__ = ["ChatBedrock", "ChatBedrockConverse"] | ||
__all__ = ["ChatBedrock", "ChatBedrockConverse", "DemoChatBedrock"] |
Oops, something went wrong.