Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add rerank document compressor #331

Merged
merged 13 commits into from
Feb 6, 2025
2 changes: 2 additions & 0 deletions libs/aws/langchain_aws/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
create_neptune_sparql_qa_chain,
)
from langchain_aws.chat_models import ChatBedrock, ChatBedrockConverse
from langchain_aws.document_compressors.rerank import BedrockRerank
from langchain_aws.embeddings import BedrockEmbeddings
from langchain_aws.graphs import NeptuneAnalyticsGraph, NeptuneGraph
from langchain_aws.llms import BedrockLLM, SagemakerEndpoint
Expand Down Expand Up @@ -48,4 +49,5 @@ def setup_logging():
"NeptuneGraph",
"InMemoryVectorStore",
"InMemorySemanticCache",
"BedrockRerank"
]
Empty file.
134 changes: 134 additions & 0 deletions libs/aws/langchain_aws/document_compressors/rerank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
from copy import deepcopy
from typing import Any, Dict, List, Optional, Sequence, Union

import boto3
from langchain_core.callbacks.manager import Callbacks
from langchain_core.documents import BaseDocumentCompressor, Document
from langchain_core.utils import from_env
from pydantic import ConfigDict, Field, model_validator
from typing_extensions import Self


class BedrockRerank(BaseDocumentCompressor):
"""Document compressor that uses AWS Bedrock Rerank API."""

model_arn: str
"""The ARN of the reranker model."""
client: Any = None
"""Bedrock client to use for compressing documents."""
top_n: Optional[int] = 3
"""Number of documents to return."""
region_name: str = Field(
default_factory=from_env("AWS_DEFAULT_REGION", default=None)
)
"""AWS region to initialize the Bedrock client."""
credentials_profile_name: Optional[str] = Field(
default_factory=from_env("AWS_PROFILE", default=None)
)
"""AWS profile for authentication, optional."""

model_config = ConfigDict(
extra="forbid",
arbitrary_types_allowed=True,
)

@model_validator(mode="before")
@classmethod
def initialize_client(cls, values: Dict[str, Any]) -> Any:
"""Initialize the AWS Bedrock client."""
if not values.get("client"):
session = (
boto3.Session(profile_name=values.get("credentials_profile_name"))
if values.get("credentials_profile_name", None)
else boto3.Session()
)
values["client"] = session.client(
"bedrock-agent-runtime",
region_name=values.get("region_name"),
)
return values

def rerank(
self,
documents: Sequence[Union[str, Document, dict]],
query: str,
top_n: Optional[int] = None,
extra_model_fields: Optional[Dict[str, Any]] = None,
) -> List[Dict[str, Any]]:
"""Returns an ordered list of documents based on their relevance to the query.

Args:
query: The query to use for reranking.
documents: A sequence of documents to rerank.
top_n: The number of top-ranked results to return. Defaults to self.top_n.
extra_model_fields: A dictionary of additional fields to pass to the model.

Returns:
List[Dict[str, Any]]: A list of ranked documents with relevance scores.
"""
if len(documents) == 0:
return []

# Serialize documents for the Bedrock API
serialized_documents = [
{"textDocument": {"text": doc.page_content}, "type": "TEXT"}
if isinstance(doc, Document)
else {"textDocument": {"text": doc}, "type": "TEXT"}
if isinstance(doc, str)
else {"jsonDocument": doc, "type": "JSON"}
for doc in documents
]

request_body = {
"queries": [{"textQuery": {"text": query}, "type": "TEXT"}],
"rerankingConfiguration": {
"bedrockRerankingConfiguration": {
"modelConfiguration": {
"modelArn": self.model_arn,
"additionalModelRequestFields": extra_model_fields
or {},
},
"numberOfResults": top_n or self.top_n,
},
"type": "BEDROCK_RERANKING_MODEL",
},
"sources": [
{"inlineDocumentSource": doc, "type": "INLINE"}
for doc in serialized_documents
],
}

response = self.client.rerank(**request_body)
response_body = response.get("results", [])

results = [
{"index": result["index"], "relevance_score": result["relevanceScore"]}
for result in response_body
]

return results

def compress_documents(
self,
documents: Sequence[Document],
query: str,
callbacks: Optional[Callbacks] = None,
) -> Sequence[Document]:
"""
Compress documents using Bedrock's rerank API.

Args:
documents: A sequence of documents to compress.
query: The query to use for compressing the documents.
callbacks: Callbacks to run during the compression process.

Returns:
A sequence of compressed documents.
"""
compressed = []
for res in self.rerank(documents, query):
doc = documents[res["index"]]
doc_copy = Document(doc.page_content, metadata=deepcopy(doc.metadata))
doc_copy.metadata["relevance_score"] = res["relevance_score"]
compressed.append(doc_copy)
return compressed
Empty file.
55 changes: 55 additions & 0 deletions libs/aws/tests/unit_tests/document_compressors/test_rerank.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
from unittest.mock import MagicMock, patch

import pytest
from langchain_core.documents import Document

from langchain_aws.document_compressors.rerank import BedrockRerank


@pytest.fixture
def reranker() -> BedrockRerank:
reranker = BedrockRerank(
model_arn="arn:aws:bedrock:us-west-2::foundation-model/amazon.rerank-v1:0",
region_name="us-east-1",
)
reranker.client = MagicMock()
return reranker

@patch("boto3.Session")
def test_initialize_client(mock_boto_session: MagicMock, reranker: BedrockRerank) -> None:
session_instance = MagicMock()
mock_boto_session.return_value = session_instance
session_instance.client.return_value = MagicMock()
assert reranker.client is not None

@patch("langchain_aws.document_compressors.rerank.BedrockRerank.rerank")
def test_rerank(mock_rerank: MagicMock, reranker: BedrockRerank) -> None:
mock_rerank.return_value = [
{"index": 0, "relevance_score": 0.9},
{"index": 1, "relevance_score": 0.8},
]

documents = [Document(page_content="Doc 1"), Document(page_content="Doc 2")]
query = "Example Query"
results = reranker.rerank(documents, query)

assert len(results) == 2
assert results[0]["index"] == 0
assert results[0]["relevance_score"] == 0.9
assert results[1]["index"] == 1
assert results[1]["relevance_score"] == 0.8

@patch("langchain_aws.document_compressors.rerank.BedrockRerank.rerank")
def test_compress_documents(mock_rerank: MagicMock, reranker: BedrockRerank) -> None:
mock_rerank.return_value = [
{"index": 0, "relevance_score": 0.95},
{"index": 1, "relevance_score": 0.85},
]

documents = [Document(page_content="Content 1"), Document(page_content="Content 2")]
query = "Relevant query"
compressed_docs = reranker.compress_documents(documents, query)

assert len(compressed_docs) == 2
assert compressed_docs[0].metadata["relevance_score"] == 0.95
assert compressed_docs[1].metadata["relevance_score"] == 0.85
Loading