Skip to content

Commit

Permalink
new CUTEr variations from Luksan and Vlcek
Browse files Browse the repository at this point in the history
git-svn-id: http://ccpforge.cse.rl.ac.uk/svn/cutest/sif/trunk@171 ca3beb79-f7c6-489d-80df-314e45fd556d
  • Loading branch information
nimg committed Jul 8, 2013
1 parent 9be10cd commit 4afb746
Show file tree
Hide file tree
Showing 12 changed files with 2,165 additions and 1 deletion.
142 changes: 142 additions & 0 deletions CHNRSNBM.SIF
Original file line number Diff line number Diff line change
@@ -0,0 +1,142 @@
***************************
* SET UP THE INITIAL DATA *
***************************

NAME CHNRSNBM

* Problem :
* --------
* A variable dimension version of the chained Rosenbrock function (CHNROSNB)
* by Luksan et al.

* Source: problem 27 in
* L. Luksan, C. Matonoha and J. Vlcek
* Modified CUTE problems for sparse unconstraoined optimization
* Technical Report 1081
* Institute of Computer Science
* Academy of Science of the Czech Republic

* that is an extension of that proposed in
* Ph.L. Toint,
* "Some numerical results using a sparse matrix updating formula in
* unconstrained optimization",
* Mathematics of Computation, vol. 32(114), pp. 839-852, 1978.

* See also Buckley#46 (n = 25) (p. 45).
* SIF input: Ph. Toint, Dec 1989.
* this version Nick Gould, June, 2013

* classification SUR2-AN-V-0

* Number of variables ( at most 50)

*IE N 10 $-PARAMETER original value
*IE N 25 $-PARAMETER
IE N 50 $-PARAMETER

* other parameter definitions

IE 1 1
IE 2 2

VARIABLES

DO I 1 N
X X(I)
ND

GROUPS

DO I 2 N
IA I-1 I -1
XN SQ(I) X(I-1) 1.0
RI RI I
R( SINI SIN RI
RA ALPHA SINI 1.5
R* AI2 ALPHA ALPHA
RM 16AI2 AI2 16.0
RD SCL 16AI2 1.0
ZN SQ(I) 'SCALE' SCL
XN B(I) X(I) 1.0
ND

CONSTANTS

DO I 2 N
X CHNRSNBM B(I) 1.0
ND

BOUNDS

FR CHNRSNBM 'DEFAULT'

START POINT

XV CHNROSMB 'DEFAULT' -1.0

ELEMENT TYPE

EV ETYPE V1

ELEMENT USES

XT 'DEFAULT' ETYPE

DO I 2 N
ZV ELA(I) V1 X(I)
ND

GROUP TYPE

GV L2 GVAR

GROUP USES

XT 'DEFAULT' L2

DO I 2 N
XE SQ(I) ELA(I)
ND

OBJECT BOUND

LO CHNRSNBM 0.0

* Solution

*LO SOLTN 0.0

ENDATA

***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************

ELEMENTS CHNRSNBM

INDIVIDUALS

T ETYPE
F - V1 ** 2
G V1 - 2.0 * V1
H V1 V1 - 2.0

ENDATA

*********************
* SET UP THE GROUPS *
* ROUTINE *
*********************

GROUPS CHNRSNBM

INDIVIDUALS

T L2

F GVAR * GVAR
G GVAR + GVAR
H 2.0

ENDATA
255 changes: 255 additions & 0 deletions DIXMAANM.SIF
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
***************************
* SET UP THE INITIAL DATA *
***************************

NAME DIXMAANM

* Problem :
* *********
* A variant on the Dixon-Maany test problem (version I)

* Source:
* L. Luksan, C. Matonoha and J. Vlcek
* Modified CUTE problems for sparse unconstraoined optimization
* Technical Report 1081
* Institute of Computer Science
* Academy of Science of the Czech Republic

* (problem 19) based on

* L.C.W. Dixon and Z. Maany,
* "A family of test problems with sparse Hessians for unconstrained
* optimization",
* TR 206, Numerical Optimization Centre, Hatfield Polytechnic, 1988.

* SIF input: Ph. Toint, Dec 1989.
* correction by Ph. Shott, January 1995.
* this version Nick Gould, June, 2013

* classification OUR2-AN-V-0

* M is equal to the third of the number of variables

*IE M 5 $-PARAMETER n = 15 original value
*IE M 30 $-PARAMETER n = 90
*IE M 100 $-PARAMETER n = 300
*IE M 500 $-PARAMETER n = 1500
IE M 1000 $-PARAMETER n = 3000
*IE M 3000 $-PARAMETER n = 9000
IE M 5 $-PARAMETER n = 15 original value

* N is the number of variables

IM N M 3

* Problem parameters

RE ALPHA 1.0
RE BETA 0.0
RE GAMMA 0.125
RE DELTA 0.125

* K-set 3

IE K1 2
IE K2 1
IE K3 1
IE K4 2

* Other parameters

RI RN N
IA N-1 N -1
I+ 2M M M

IE 1 1

VARIABLES

DO I 1 N
X X(I)
ND

GROUPS

N GA
N GB
N GC
N GD

CONSTANTS

DIXMAANM GA -1.0

BOUNDS

FR DIXMAANM 'DEFAULT'

START POINT

XV DIXMAANM 'DEFAULT' 2.0

ELEMENT TYPE

EV SQ X
EV SQB X Y
EV SQC X Y
EV 2PR X Y

ELEMENT USES

* First group

DO I 1 N
XT A(I) SQ
ZV A(I) X X(I)
ND

* Second group

DO I 1 N-1
IA I+1 I 1
XT B(I) SQB
ZV B(I) X X(I)
ZV B(I) Y X(I+1)
ND

* Third group

DO I 1 2M
I+ I+M I M
XT C(I) SQC
ZV C(I) X X(I)
ZV C(I) Y X(I+M)
ND

* Fourth group

DO I 1 M
I+ I+2M I 2M
XT D(I) 2PR
ZV D(I) X X(I)
ZV D(I) Y X(I+2M)
ND

GROUP USES

* First group

DO I 1 N
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K1
R* TMP TMP I/N
OD J
R* AI TMP ALPHA
ZE GA A(I) AI
ND

* Second group

DO I 1 N-1
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K2
R* TMP TMP I/N
OD J
R* BI TMP BETA
ZE GB B(I) BI
ND

* Third group

DO I 1 2M
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K3
R* TMP TMP I/N
OD J
R* CI TMP GAMMA
ZE GC C(I) CI
ND

* Fourth group

DO I 1 M
RI RI I
R/ I/N RI RN
RE TMP 1.0
DO J 1 K4
R* TMP TMP I/N
OD J
R* DI TMP DELTA
ZE GD D(I) DI
ND

OBJECT BOUND

LO DIXMAANM 0.0

* Solution

*LO SOLTN 1.0

ENDATA

***********************
* SET UP THE FUNCTION *
* AND RANGE ROUTINES *
***********************

ELEMENTS DIXMAANM

TEMPORARIES

R F1
R F2
R DF2DY

INDIVIDUALS

* First type

T SQ
F X * X
G X X + X
H X X 2.0

* Second type

T SQB
A F1 X * X
A F2 Y + Y * Y
A DF2DY 1.0 + 2.0 * Y
F F1 * F2 * F2
G X 2.0 * X * F2 * F2
G Y 2.0 * F1 * F2 * DF2DY
H X X 2.0 * F2 * F2
H X Y 4.0 * X * DF2DY * F2
H Y Y 4.0 * F1 * F2 +
H+ 2.0 * F1 * DF2DY * DF2DY

* Third type

T SQC
A F1 X * X
A F2 Y**4
F F1 * F2
G X 2.0 * X * F2
G Y 4.0 * F1 * Y**3
H X X 2.0 * F2
H X Y 8.0 * X * Y**3
H Y Y 12.0 * F1 * Y**2

* Fourth type

T 2PR
F X * Y
G X Y
G Y X
H X Y 1.0

ENDATA
Loading

0 comments on commit 4afb746

Please sign in to comment.