Skip to content

Commit

Permalink
update with scripts for machete blog
Browse files Browse the repository at this point in the history
  • Loading branch information
LucasWilkinson committed Oct 1, 2024
1 parent b29762d commit 78c545b
Show file tree
Hide file tree
Showing 3 changed files with 303 additions and 1 deletion.
18 changes: 17 additions & 1 deletion benchmark_kernels.py
Original file line number Diff line number Diff line change
Expand Up @@ -161,7 +161,17 @@ def run_range_bench(args):
MKNs = list(zip(Ms, Ks, Ns))
data = run(args, MKNs)

make_output(data, MKNs, f"range_bench-{args.dtype}")
make_output(data, MKNs, f"range_bench-{args.act_type}")


def run_shape_bench(args):
Ms = [int(m) for m in args.ms.split(",")]
Ks = [args.k] * len(Ms)
Ns = [args.n] * len(Ms)
MKNs = list(zip(Ms, Ks, Ns))
data = run(args, MKNs)

make_output(data, MKNs, f"shape_bench-{args.act_type}")


def run_model_bench(args):
Expand Down Expand Up @@ -301,6 +311,12 @@ def to_torch_dtype(dt):
square_parser.add_argument("--dim-increment", type=int, required=True)
square_parser.set_defaults(func=run_square_bench)

shape_parser = subparsers.add_parser("shape_bench")
shape_parser.add_argument("--ms", type=str, default=None)
shape_parser.add_argument("--n", type=int, default=None)
shape_parser.add_argument("--k", type=int, default=None)
shape_parser.set_defaults(func=run_shape_bench)

range_parser = subparsers.add_parser("range_bench")
range_parser.add_argument("--dim-start", type=int, required=True)
range_parser.add_argument("--dim-end", type=int, required=True)
Expand Down
151 changes: 151 additions & 0 deletions plot/plot_percentage_of_peak.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
import math
import pickle
import re
from collections import defaultdict
from typing import List, Dict

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from torch.utils.benchmark import Measurement as TMeasurement

from vllm.utils import FlexibleArgumentParser

# Set the font to Roboto
plt.rcParams['font.family'] = 'Roboto'

# Define peak FLOPS for different devices (in TFLOPS)
PEAK_FLOPS: Dict[str, float] = {
"H100-SXM": 1979, # FP16 Tensor Core
"H100-NVL": 1671, # FP16 Tensor Core
"A100-40GB-PCIe": 312, # FP16
"A100-80GB-PCIe": 312, # FP16
"A100-40GB-SXM": 312, # FP16
"A100-80GB-SXM": 312, # FP16
}

def calculate_flops(M: int, K: int, N: int, L: int) -> float:
return 2 * M * N * K * L # GEMM FLOPS

if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the percentage of peak FLOPS for processing a single batch of requests.')
parser.add_argument('filename', type=str)
parser.add_argument('--shape', type=str, help='Specific shape to plot (e.g., "1024x1024")')
parser.add_argument('--highlight', type=str, default='machete', help='Kernel to highlight')
parser.add_argument('--ignore', type=str, nargs='+', default=[], help='Kernels to ignore (not plot)')
parser.add_argument('--device', type=str, required=True, choices=PEAK_FLOPS.keys(), help='Specify the device')

args = parser.parse_args()

with open(args.filename, 'rb') as f:
data: List[TMeasurement] = pickle.load(f)

results = defaultdict(lambda: list())
all_kernels = set()

if "results" in data:
data = data["results"]

for v in data:
print(v.task_spec.sub_label)
L = 1
result = re.search(r"L=(\d+)", v.task_spec.sub_label)
if result is not None:
L = int(result.group(1))

print(L)

result = re.search(r"MKN=\(\d+x(\d+x\d+)\)", v.task_spec.sub_label)
if result is not None:
KN = result.group(1)
else:
raise Exception("MKN not found")
result = re.search(r"MKN=\((\d+)x(\d+)x(\d+)\)", v.task_spec.sub_label)
if result is not None:
M, K, N = map(int, result.groups())
else:
raise Exception("MKN not found")

print(M, K, N, L)

kernel = v.task_spec.description
all_kernels.add(kernel)
if kernel not in args.ignore:
flops = calculate_flops(M, K, N, L)
peak_flops_percentage = (flops / v.median) / (PEAK_FLOPS[args.device] * 1e12) * 100
results[KN].append({
"kernel": kernel,
"batch_size": M,
"median": v.median,
"peak_flops_percentage": peak_flops_percentage
})

if args.shape:
if args.shape not in results:
print(f"Shape {args.shape} not found in the data.")
exit(1)
shapes_to_plot = [args.shape]
rows, cols = 1, 1
else:
shapes_to_plot = list(results.keys())
rows = int(math.ceil(len(shapes_to_plot) / 2))
cols = 2

fig, axs = plt.subplots(rows, cols, figsize=(7 * cols, 4 * rows))
if not isinstance(axs, np.ndarray):
axs = np.array([axs])
axs = axs.flatten()

color_palette = sns.color_palette("husl", 8)
most_red_index = max(range(len(color_palette)), key=lambda i: color_palette[i][0])

all_kernels_list = sorted(list(all_kernels))
kernel_colors = {kernel: color for kernel, color in zip(all_kernels_list, color_palette)}

if args.highlight in kernel_colors:
highlight_color = kernel_colors[args.highlight]
kernel_colors[args.highlight] = color_palette[most_red_index]
kernel_colors[all_kernels_list[most_red_index]] = highlight_color

for axs_idx, shape in enumerate(shapes_to_plot):
plt.sca(axs[axs_idx])
df = pd.DataFrame(results[shape])

df = df.sort_values(by=['batch_size', 'kernel'])
df['batch_size'] = df['batch_size'].astype(str)

plot_df = df[~df['kernel'].isin(args.ignore)]

plot_colors = {k: v for k, v in kernel_colors.items() if k in plot_df['kernel'].unique()}

sns.lineplot(data=plot_df,
x="batch_size",
y="peak_flops_percentage",
hue="kernel",
markers=True,
dashes=False,
palette=plot_colors,
marker="o")

plt.title(f"Weight Shape: {shape} (OUTxIN)", fontsize=14)
plt.ylim(0, 100)
plt.ylabel("Percentage of Peak FLOPS", fontsize=12)
plt.xlabel("Batch Size / Seq. Len", fontsize=12)

legend = plt.legend(title="Kernel", title_fontsize='12', fontsize='10', loc='upper left', bbox_to_anchor=(1, 1))

for handle in legend.legend_handles:
handle.set_marker('o')

plt.tick_params(axis='both', which='major', labelsize=10)

for i in range(axs_idx + 1, len(axs)):
fig.delaxes(axs[i])

plt.tight_layout()
outfile = f"graph_bench_peak_flops_percentage_{args.device}"

plt.savefig(f"{outfile}.pdf", bbox_inches='tight')
print(f"Saved to {outfile}.pdf")
135 changes: 135 additions & 0 deletions plot/plot_tflops.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import math
import pickle
import re
from collections import defaultdict
from typing import List, Dict

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import seaborn as sns
from torch.utils.benchmark import Measurement as TMeasurement

from vllm.utils import FlexibleArgumentParser

# Set the font to Roboto
plt.rcParams['font.family'] = 'Roboto'

if __name__ == "__main__":
parser = FlexibleArgumentParser(
description='Benchmark the percentage of peak FLOPS for processing a single batch of requests.')
parser.add_argument('filename', type=str)
parser.add_argument('--shape', type=str, help='Specific shape to plot (e.g., "1024x1024")')
parser.add_argument('--highlight', type=str, default='machete', help='Kernel to highlight')
parser.add_argument('--ignore', type=str, nargs='+', default=[], help='Kernels to ignore (not plot)')
args = parser.parse_args()

with open(args.filename, 'rb') as f:
data: List[TMeasurement] = pickle.load(f)

results = defaultdict(lambda: list())
all_kernels = set()

if "results" in data:
data = data["results"]

for v in data:
print(v.task_spec.sub_label)
L = 1
result = re.search(r"L=(\d+)", v.task_spec.sub_label)
if result is not None:
L = int(result.group(1))

print(L)

result = re.search(r"MKN=\(\d+x(\d+x\d+)\)", v.task_spec.sub_label)
if result is not None:
KN = result.group(1)
else:
raise Exception("MKN not found")
result = re.search(r"MKN=\((\d+)x(\d+)x(\d+)\)", v.task_spec.sub_label)
if result is not None:
M, K, N = map(int, result.groups())
else:
raise Exception("MKN not found")

print(M, K, N, L)

kernel = v.task_spec.description
all_kernels.add(kernel)
if kernel not in args.ignore:
flops = calculate_flops(M, K, N, L)
tlops = (flops / v.median) / 1e12
results[KN].append({
"kernel": kernel,
"batch_size": M,
"median": v.median,
"tlops": tlops
})

if args.shape:
if args.shape not in results:
print(f"Shape {args.shape} not found in the data.")
exit(1)
shapes_to_plot = [args.shape]
rows, cols = 1, 1
else:
shapes_to_plot = list(results.keys())
rows = int(math.ceil(len(shapes_to_plot) / 2))
cols = 2

fig, axs = plt.subplots(rows, cols, figsize=(7 * cols, 4 * rows))
if not isinstance(axs, np.ndarray):
axs = np.array([axs])
axs = axs.flatten()

color_palette = sns.color_palette("husl", 8)
most_red_index = max(range(len(color_palette)), key=lambda i: color_palette[i][0])

all_kernels_list = sorted(list(all_kernels))
kernel_colors = {kernel: color for kernel, color in zip(all_kernels_list, color_palette)}

if args.highlight in kernel_colors:
highlight_color = kernel_colors[args.highlight]
kernel_colors[args.highlight] = color_palette[most_red_index]
kernel_colors[all_kernels_list[most_red_index]] = highlight_color

for axs_idx, shape in enumerate(shapes_to_plot):
plt.sca(axs[axs_idx])
df = pd.DataFrame(results[shape])

df = df.sort_values(by=['batch_size', 'kernel'])
df['batch_size'] = df['batch_size'].astype(str)

plot_df = df[~df['kernel'].isin(args.ignore)]

plot_colors = {k: v for k, v in kernel_colors.items() if k in plot_df['kernel'].unique()}

sns.lineplot(data=plot_df,
x="batch_size",
y="tlops",
hue="kernel",
markers=True,
dashes=False,
palette=plot_colors,
marker="o")

plt.title(f"Weight Shape: {shape} (OUTxIN)", fontsize=14)
plt.ylabel("TFLOPS/s", fontsize=12)
plt.xlabel("Batch Size / Seq. Len", fontsize=12)

legend = plt.legend(title="Kernel", title_fontsize='12', fontsize='10', loc='upper left', bbox_to_anchor=(1, 1))

for handle in legend.legend_handles:
handle.set_marker('o')

plt.tick_params(axis='both', which='major', labelsize=10)

for i in range(axs_idx + 1, len(axs)):
fig.delaxes(axs[i])

plt.tight_layout()
outfile = f"graph_bench_tflops_{args.device}"

plt.savefig(f"{outfile}.pdf", bbox_inches='tight')
print(f"Saved to {outfile}.pdf")

0 comments on commit 78c545b

Please sign in to comment.