Skip to content

Based on the movie scoring data set, the movie recommendation system is built with FM and LR as the core(基于爬取的电影评分数据集,构建以FM和LR为核心的电影推荐系统).

License

Notifications You must be signed in to change notification settings

orclight/recsys_core

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

整体介绍

  • recsys_ui: 前端技术(html5+JavaScript+jquery+ajax)
  • recsys_web: 后端技术(Java+SpringBoot+mysql)
  • recsys_spider: 网络爬虫(python+BeautifulSoup)
  • recsys_sql: 使用SQL数据处理
  • recsys_model: pandas, libFM, sklearn. pandas数据分析和数据清洗,使用libFM,sklearn对模型初步搭建
  • recsys_core: 使用pandas, libFM, sklearn完整的数据处理和模型构建、训练、预测、更新的程序
  • recsys_etl:ETL 处理爬虫增量数据时使用kettle ETL便捷处理数据

为了能够输出一个可感受的系统,我们采购了阿里云服务器作为数据库服务器和应用服务器,在线上搭建了电影推荐系统的第一版,地址是:

可以注册,也可以使用已有用户:

用户名 密码
gavin 123
gavin2 123
wuenda 123

欢迎登录使用感受一下。

输入图片说明

设计思路

image

用简单地方式表述一下设计思路,

1.后端服务recsys_web依赖于系统数据库的推荐表‘recmovie’展示给用户推荐内容
2.用户对电影打分后(暂时没有对点击动作进行响应),后台应用会向mqlog表插入一条数据(消息)。
3.新用户注册,系统会插入mqlog中一条新用户注册消息
4.新电影添加,系统会插入mqlog中一条新电影添加消息
5.推荐模块recsys_core会拉取用户的打分消息,并且并行的做以下操作:
a.增量的更新训练样本
b.快速(因服务器比较卡,目前设定了延时)对用户行为进行基于内容推荐的召回
c.训练样本更新模型
d.使用FM,LR模型对Item based所召回的数据进行精排
e.处理新用户注册消息,监听到用户注册消息后,对该用户的属性初始化(统计值)。
f.处理新电影添加消息,更新基于内容相似度而生成的相似度矩阵

注:

模型相关的模块介绍

增量的处理用户comment,即增量处理评分模块

这个模块负责监听来自mqlog的消息,如果消息类型是用户的新的comment,则对消息进行拉取,并相应的把新的comment合并到总的训练样本集合,并保存到一个临时目录 然后更新数据库的config表,把最新的样本集合(csv格式)的路径更新上去

运行截图

输入图片说明

消息队列的截图

image

把csv处理为libsvm数据

这个模块负责把最新的csv文件,异步的处理成libSVM格式的数据,以供libFM和LR模型使用,根据系统的性能确定任务的间隔时间

运行截图

image

基于内容相似度推荐

当监听到用户有新的comment时,该模块将进行基于内容相似度的推荐,并按照电影评分推荐

运行截图

image

libFM预测

http://www.libfm.org/

对已有的基于内容推荐召回的电影进行模型预测打分,呈现时按照打分排序

如下图为打分更新

image

逻辑回归预测

对样本集中的打分做0,1处理,根据正负样本平衡,> 3分为喜欢 即1, <=3 为0 即不喜欢,这样使用逻辑回归做是否喜欢的点击概率预估,根据概率排序

image

About

Based on the movie scoring data set, the movie recommendation system is built with FM and LR as the core(基于爬取的电影评分数据集,构建以FM和LR为核心的电影推荐系统).

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%