Skip to content

Commit

Permalink
Browse files Browse the repository at this point in the history
  • Loading branch information
AtsushiSakai committed Feb 26, 2020
1 parent e8ffc01 commit 2e188f8
Showing 1 changed file with 43 additions and 40 deletions.
83 changes: 43 additions & 40 deletions PathTracking/pure_pursuit/pure_pursuit.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
"""
Path tracking simulation with pure pursuit steering control and PID speed control.
Path tracking simulation with pure pursuit steering and PID speed control.
author: Atsushi Sakai (@Atsushi_twi)
Guillaume Jacquenot (@Gjacquenot)
Expand All @@ -10,13 +10,12 @@
import math
import matplotlib.pyplot as plt


# Parameters
k = 0.1 # look forward gain
Lfc = 2.0 # look-ahead distance
Lfc = 2.0 # [m] look-ahead distance
Kp = 1.0 # speed proportional gain
dt = 0.1 # [s]
L = 2.9 # [m] wheel base of vehicle

dt = 0.1 # [s] time tick
WB = 2.9 # [m] wheel base of vehicle

show_animation = True

Expand All @@ -28,20 +27,18 @@ def __init__(self, x=0.0, y=0.0, yaw=0.0, v=0.0):
self.y = y
self.yaw = yaw
self.v = v
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw))

def update(self, a, delta):

self.x += self.v * math.cos(self.yaw) * dt
self.y += self.v * math.sin(self.yaw) * dt
self.yaw += self.v / L * math.tan(delta) * dt
self.yaw += self.v / WB * math.tan(delta) * dt
self.v += a * dt
self.rear_x = self.x - ((L / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((L / 2) * math.sin(self.yaw))
self.rear_x = self.x - ((WB / 2) * math.cos(self.yaw))
self.rear_y = self.y - ((WB / 2) * math.sin(self.yaw))

def calc_distance(self, point_x, point_y):

dx = self.rear_x - point_x
dy = self.rear_y - point_y
return math.hypot(dx, dy)
Expand All @@ -56,27 +53,30 @@ def __init__(self):
self.v = []
self.t = []

def append(self, t , state):
def append(self, t, state):
self.x.append(state.x)
self.y.append(state.y)
self.yaw.append(state.yaw)
self.v.append(state.v)
self.t.append(t)


def PIDControl(target, current):
def proportional_control(target, current):
a = Kp * (target - current)

return a


class Trajectory:
class TargetCourse:

def __init__(self, cx, cy):
self.cx = cx
self.cy = cy
self.old_nearest_point_index = None

def search_target_index(self, state):

# To speed up nearest point search, doing it at only first time.
if self.old_nearest_point_index is None:
# search nearest point index
dx = [state.rear_x - icx for icx in self.cx]
Expand All @@ -86,47 +86,45 @@ def search_target_index(self, state):
self.old_nearest_point_index = ind
else:
ind = self.old_nearest_point_index
distance_this_index = state.calc_distance(self.cx[ind], self.cy[ind])
distance_this_index = state.calc_distance(self.cx[ind],
self.cy[ind])
while True:
ind = ind + 1 if (ind + 1) < len(self.cx) else ind
distance_next_index = state.calc_distance(self.cx[ind], self.cy[ind])
distance_next_index = state.calc_distance(self.cx[ind + 1],
self.cy[ind + 1])
if distance_this_index < distance_next_index:
break
ind = ind + 1 if (ind + 1) < len(self.cx) else ind
distance_this_index = distance_next_index
self.old_nearest_point_index = ind

L = 0.0

Lf = k * state.v + Lfc
Lf = k * state.v + Lfc # update look ahead distance

# search look ahead target point index
while Lf > L and (ind + 1) < len(self.cx):
L = state.calc_distance(self.cx[ind], self.cy[ind])
while Lf > state.calc_distance(self.cx[ind], self.cy[ind]):
if (ind + 1) >= len(self.cx):
break # not exceed goal
ind += 1

return ind
return ind, Lf


def pure_pursuit_control(state, trajectory, pind):

ind = trajectory.search_target_index(state)
def pure_pursuit_steer_control(state, trajectory, pind):
ind, Lf = trajectory.search_target_index(state)

if pind >= ind:
ind = pind

if ind < len(trajectory.cx):
tx = trajectory.cx[ind]
ty = trajectory.cy[ind]
else:
else: # toward goal
tx = trajectory.cx[-1]
ty = trajectory.cy[-1]
ind = len(trajectory.cx) - 1

alpha = math.atan2(ty - state.rear_y, tx - state.rear_x) - state.yaw

Lf = k * state.v + Lfc

delta = math.atan2(2.0 * L * math.sin(alpha) / Lf, 1.0)
delta = math.atan2(2.0 * WB * math.sin(alpha) / Lf, 1.0)

return delta, ind

Expand All @@ -147,7 +145,7 @@ def plot_arrow(x, y, yaw, length=1.0, width=0.5, fc="r", ec="k"):

def main():
# target course
cx = np.arange(0, 50, 0.1)
cx = np.arange(0, 50, 0.5)
cy = [math.sin(ix / 5.0) * ix / 2.0 for ix in cx]

target_speed = 10.0 / 3.6 # [m/s]
Expand All @@ -161,22 +159,27 @@ def main():
time = 0.0
states = States()
states.append(time, state)
trajectory = Trajectory(cx, cy)
target_ind = trajectory.search_target_index(state)
target_course = TargetCourse(cx, cy)
target_ind, _ = target_course.search_target_index(state)

while T >= time and lastIndex > target_ind:
ai = PIDControl(target_speed, state.v)
di, target_ind = pure_pursuit_control(state, trajectory, target_ind)
state.update(ai, di)

# Calc control input
ai = proportional_control(target_speed, state.v)
di, target_ind = pure_pursuit_steer_control(
state, target_course, target_ind)

state.update(ai, di) # Control vehicle

time += dt
states.append(time, state)

if show_animation: # pragma: no cover
plt.cla()
# for stopping simulation with the esc key.
plt.gcf().canvas.mpl_connect('key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plt.gcf().canvas.mpl_connect(
'key_release_event',
lambda event: [exit(0) if event.key == 'escape' else None])
plot_arrow(state.x, state.y, state.yaw)
plt.plot(cx, cy, "-r", label="course")
plt.plot(states.x, states.y, "-b", label="trajectory")
Expand Down

0 comments on commit 2e188f8

Please sign in to comment.