Skip to content

psylsph/ai_stocks_technical_analysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AI Stocks Technical Analysis

A Python application that generates AI-powered technical analysis for stocks and cryptocurrencies using candlestick charts, technical indicators, sentiment analysis, and Google's Gemini AI models.

Features

  • Interactive candlestick charts with multiple technical indicators:
    • 20-Day Simple Moving Average (SMA)
    • 20-Day Exponential Moving Average (EMA)
    • 20-Day Bollinger Bands
    • Volume Weighted Average Price (VWAP)
  • AI-powered analysis using Google's Gemini models (gemini-1.5-pro or gemini-2.0-flash-exp)
  • Sentiment analysis from news sources with scoring
  • Support for multiple assets:
    • US Stocks (e.g., DJT)
    • UK Stocks (e.g., BA.L)
    • Cryptocurrencies (e.g., BTC-USD)
  • Interactive Streamlit web interface
  • Detailed sentiment analysis with source citations
  • Combined technical and sentiment analysis recommendations

Prerequisites

  • Python 3.x
  • Google API Key for Gemini AI models

Installation

  1. Clone repository:
git clone https://github.com/psylsph/ai_stocks_technical_analysis
  1. Install packages:
python -m venv .venv
source .venv/bin/activate  # On Windows use: .venv\Scripts\activate
python -m pip install --upgrade pip
pip install --no-cache-dir -r requirements.txt
pip install --no-cache-dir kaleido==0.1.0.post1 # force install this version on Windows OS

Usage

  1. Set your Google API key:
export GOOGLE_API_KEY=<Your Google API Key>
  1. Run the Streamlit application:
streamlit run ai_stocks_technical_analysis.py
  1. In the web interface:
  • Enter a stock/crypto ticker
  • Select date range
  • Choose technical indicators
  • Select Gemini AI model version
  • Click "Fetch Data" to generate analysis

Credits

Based on @DeepCharts

License

MIT License

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages