Skip to content

Commit

Permalink
add deepseek for eagle
Browse files Browse the repository at this point in the history
  • Loading branch information
michaelfeil committed Feb 2, 2025
1 parent 959dca4 commit a293f70
Show file tree
Hide file tree
Showing 2 changed files with 150 additions and 1 deletion.
11 changes: 10 additions & 1 deletion python/sglang/srt/models/deepseek_v2.py
Original file line number Diff line number Diff line change
Expand Up @@ -989,7 +989,16 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
if is_hip_:
self_attn.w_scale *= 2.0


# def get_embed_and_head(self): # TODO: might be used to un-duplicate the weights
# return self.model.embed_tokens.weight, self.lm_head.weight

# def set_embed_and_head(self, embed, head):
# del self.model.embed_tokens.weight
# del self.lm_head.weight
# self.model.embed_tokens.weight = embed
# self.lm_head.weight = head
# torch.cuda.empty_cache()
# torch.cuda.synchronize()
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
pass

Expand Down
140 changes: 140 additions & 0 deletions python/sglang/srt/models/deepseek_v3_eagle.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

# Adapted from
# https://github.com/SafeAILab/EAGLE/blob/main/eagle/model/cnets.py
"""Inference-only DeepSeekV3-Eagle model compatible with HuggingFace weights if stipped from hf checkpoint."""

from typing import Iterable, Optional, Tuple

import torch
from torch import nn
from transformers import PretrainedConfig

from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.models.deepseek_v2 import DeepseekV3ForCausalLM, RMSNorm, DeepseekV2DecoderLayer


class DeepseekV3Model(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding( # TODO: Verify if embed_tokens or shared_embed tokens
config.vocab_size,
config.hidden_size,
)
self.layers = nn.ModuleList(
[
DeepseekV2DecoderLayer(
config, i, quant_config=quant_config,
)
for i in range(config.num_hidden_layers)
]
)
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) # TODO: Verify EPSilon
self.eh_proj = torch.nn.Linear(config.hidden_size * 2, config.hidden_size)

def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds

input_embeds_norm = self.enorm(hidden_states)
hnorm_embeds = self.hnorm(forward_batch.spec_info.hidden_states)

hidden_states = self.eh_proj(
# TODO: Verify if EH or HE order
torch.cat((hnorm_embeds, input_embeds_norm), dim=-1)
)

residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
return hidden_states + residual

class DeepseekV3ForCausalLMEagle(DeepseekV3ForCausalLM):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
cache_config=None,
) -> None:
nn.Module.__init__(self)
self.config = config
self.quant_config = quant_config
self.model = DeepseekV3Model(config, quant_config=quant_config)
# TODO: verify right code path here.
if self.config.tie_word_embeddings:

self.lm_head = self.model.embed_tokens
else:
self.lm_head = ParallelLMHead(
config.vocab_size, config.hidden_size, quant_config=quant_config
)
self.logits_processor = LogitsProcessor(config)

def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
decoder_names = [".self_attn.",".mlp.",".post_attention_layernorm.",".input_layernorm."] # weights to be loaded to the decoderlayer
layer_new_num = "0" # only support 1 layer
for name, loaded_weight in weights:
if ".enorm." in name:
# used to be name=model.layers.30.enorm
name = "model.enorm." + name.split(".enorm.")[1]
super().load_weights([(name, loaded_weight)])
elif ".hnorm." in name:
name = "model.hnorm." + name.split(".hnorm.")[1]
super().load_weights([(name, loaded_weight)])
elif "lm_head." in name:
name = "lm_head." + name.split("lm_head.")[1]
super().load_weights([(name, loaded_weight)])
elif "embed_tokens" in name:
name = "model.embed_tokens." + name.split("model.embed_tokens.")[1]
super().load_weights([(name, loaded_weight)])
elif "model.norm." in name:
name = "model.norm." + name.split("model.norm.")[1]
super().load_weights([(name, loaded_weight)])
elif any(n in name for n in decoder_names):
name_split = name.split(".")
name_split[2] = layer_new_num
name = ".".join(name_split)
super().load_weights([(name, loaded_weight)])


EntryClass = [DeepseekV3ForCausalLMEagle]

0 comments on commit a293f70

Please sign in to comment.