-
Notifications
You must be signed in to change notification settings - Fork 811
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
959dca4
commit a293f70
Showing
2 changed files
with
150 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
""" | ||
Copyright 2023-2024 SGLang Team | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
|
||
# Adapted from | ||
# https://github.com/SafeAILab/EAGLE/blob/main/eagle/model/cnets.py | ||
"""Inference-only DeepSeekV3-Eagle model compatible with HuggingFace weights if stipped from hf checkpoint.""" | ||
|
||
from typing import Iterable, Optional, Tuple | ||
|
||
import torch | ||
from torch import nn | ||
from transformers import PretrainedConfig | ||
|
||
from sglang.srt.layers.logits_processor import LogitsProcessor | ||
from sglang.srt.layers.quantization.base_config import QuantizationConfig | ||
from sglang.srt.layers.vocab_parallel_embedding import ( | ||
ParallelLMHead, | ||
VocabParallelEmbedding, | ||
) | ||
from sglang.srt.model_executor.forward_batch_info import ForwardBatch | ||
from sglang.srt.models.deepseek_v2 import DeepseekV3ForCausalLM, RMSNorm, DeepseekV2DecoderLayer | ||
|
||
|
||
class DeepseekV3Model(nn.Module): | ||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
) -> None: | ||
super().__init__() | ||
self.config = config | ||
self.vocab_size = config.vocab_size | ||
self.embed_tokens = VocabParallelEmbedding( # TODO: Verify if embed_tokens or shared_embed tokens | ||
config.vocab_size, | ||
config.hidden_size, | ||
) | ||
self.layers = nn.ModuleList( | ||
[ | ||
DeepseekV2DecoderLayer( | ||
config, i, quant_config=quant_config, | ||
) | ||
for i in range(config.num_hidden_layers) | ||
] | ||
) | ||
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | ||
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) # TODO: Verify EPSilon | ||
self.eh_proj = torch.nn.Linear(config.hidden_size * 2, config.hidden_size) | ||
|
||
def forward( | ||
self, | ||
input_ids: torch.Tensor, | ||
positions: torch.Tensor, | ||
forward_batch: ForwardBatch, | ||
input_embeds: torch.Tensor = None, | ||
) -> torch.Tensor: | ||
if input_embeds is None: | ||
hidden_states = self.embed_tokens(input_ids) | ||
else: | ||
hidden_states = input_embeds | ||
|
||
input_embeds_norm = self.enorm(hidden_states) | ||
hnorm_embeds = self.hnorm(forward_batch.spec_info.hidden_states) | ||
|
||
hidden_states = self.eh_proj( | ||
# TODO: Verify if EH or HE order | ||
torch.cat((hnorm_embeds, input_embeds_norm), dim=-1) | ||
) | ||
|
||
residual = None | ||
for i in range(len(self.layers)): | ||
layer = self.layers[i] | ||
hidden_states, residual = layer( | ||
positions, | ||
hidden_states, | ||
forward_batch, | ||
residual, | ||
) | ||
return hidden_states + residual | ||
|
||
class DeepseekV3ForCausalLMEagle(DeepseekV3ForCausalLM): | ||
def __init__( | ||
self, | ||
config: PretrainedConfig, | ||
quant_config: Optional[QuantizationConfig] = None, | ||
cache_config=None, | ||
) -> None: | ||
nn.Module.__init__(self) | ||
self.config = config | ||
self.quant_config = quant_config | ||
self.model = DeepseekV3Model(config, quant_config=quant_config) | ||
# TODO: verify right code path here. | ||
if self.config.tie_word_embeddings: | ||
|
||
self.lm_head = self.model.embed_tokens | ||
else: | ||
self.lm_head = ParallelLMHead( | ||
config.vocab_size, config.hidden_size, quant_config=quant_config | ||
) | ||
self.logits_processor = LogitsProcessor(config) | ||
|
||
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]): | ||
decoder_names = [".self_attn.",".mlp.",".post_attention_layernorm.",".input_layernorm."] # weights to be loaded to the decoderlayer | ||
layer_new_num = "0" # only support 1 layer | ||
for name, loaded_weight in weights: | ||
if ".enorm." in name: | ||
# used to be name=model.layers.30.enorm | ||
name = "model.enorm." + name.split(".enorm.")[1] | ||
super().load_weights([(name, loaded_weight)]) | ||
elif ".hnorm." in name: | ||
name = "model.hnorm." + name.split(".hnorm.")[1] | ||
super().load_weights([(name, loaded_weight)]) | ||
elif "lm_head." in name: | ||
name = "lm_head." + name.split("lm_head.")[1] | ||
super().load_weights([(name, loaded_weight)]) | ||
elif "embed_tokens" in name: | ||
name = "model.embed_tokens." + name.split("model.embed_tokens.")[1] | ||
super().load_weights([(name, loaded_weight)]) | ||
elif "model.norm." in name: | ||
name = "model.norm." + name.split("model.norm.")[1] | ||
super().load_weights([(name, loaded_weight)]) | ||
elif any(n in name for n in decoder_names): | ||
name_split = name.split(".") | ||
name_split[2] = layer_new_num | ||
name = ".".join(name_split) | ||
super().load_weights([(name, loaded_weight)]) | ||
|
||
|
||
EntryClass = [DeepseekV3ForCausalLMEagle] |