Skip to content

Commit

Permalink
[Docs] Add more details to profiling docs (#3221)
Browse files Browse the repository at this point in the history
  • Loading branch information
Edenzzzz authored Jan 31, 2025
1 parent 7b020cc commit d7c0b32
Showing 1 changed file with 44 additions and 39 deletions.
83 changes: 44 additions & 39 deletions docs/references/benchmark_and_profiling.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,46 @@
python3 -m sglang.bench_serving --backend sglang --num-prompt 10
```

## Profile with PyTorch Profiler
Pytorch Profiler is a convenient basic tool to inspect kernel execution time, call stack, and kernel overlap and occupancy.
- To profile a server
```bash
# set trace path
export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log

# start server
python -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct

# send profiling request from client
python -m sglang.bench_serving --backend sglang --model-path meta-llama/Llama-3.1-8B-Instruct --num-prompts 10 --sharegpt-output-len 100 --profile
```
Please make sure that the `SGLANG_TORCH_PROFILER_DIR` should be set at both server and client side, otherwise the trace file cannot be generated correctly . A secure way will be setting `SGLANG_TORCH_PROFILER_DIR` in the `.*rc` file of shell (e.g. `~/.bashrc` for bash shells).

- To profile offline
```bash
export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log
python -m sglang.bench_offline_throughput --model-path meta-llama/Llama-3.1-8B-Instruct --dataset-name random --num-prompts 10 --profile --mem-frac=0.8
```

- View Traces

Trace files can be loaded and visualized from:
1. https://ui.perfetto.dev/ (any browser)
2. chrome://tracing (Chrome browser only)

If browser cannot open trace file due to its large size,
client can generate a small trace file (<100MB) by controlling number of prompts and lengths of prompt outputs.
For example, when profiling a server,
```bash
python -m sglang.bench_serving --backend sglang --model-path meta-llama/Llama-3.1-8B-Instruct --num-prompts 2 --sharegpt-output-len 100 --profile
```
sets the number of prompts to 2 with `--num-prompts` argument and limits the length of output sequences to 100 with `--sharegpt-output-len` argument, which can generate a small trace file for browser to open smoothly.

## Profile with Nsight
0. Prerequisite
Nsight systems is an advanced tool that exposes more profiling details, such as register and shared memory usage, annotated code regions and low-level CUDA APIs and events.

0. Prerequisite: install using apt, or run inside a [NVIDIA Docker container](https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch/tags) or [SGLang Docker container](https://github.com/sgl-project/sglang/tree/main/docker).

```bash
# install nsys
# https://docs.nvidia.com/nsight-systems/InstallationGuide/index.html
Expand All @@ -41,54 +79,21 @@ nsys profile --trace-fork-before-exec=true --cuda-graph-trace=node -o sglang.out
python3 -m sglang.bench_serving --backend sglang --num-prompts 1000 --dataset-name random --random-input 1024 --random-output 512
```

3. Use NVTX, e.g.
3. Use NVTX to annotate code regions, e.g. to see their execution time.

```bash
# install nvtx
pip install nvtx

```
``` python
# code snippets
import nvtx
with nvtx.annotate("description", color="color"):
# some critical code
```

## Other tips

1. You can benchmark a model using dummy weights by only providing the config.json file. This allows for quick testing of model variants without training. To do so, add `--load-format dummy` to the above commands and then you only need a correct `config.json` under the checkpoint folder.
2. You can benchmark a model with modified configs (e.g., less layers) by using `--json-model-override-args`. For example, you can benchmark a model with only 2 layers and 2 kv heads using `python -m sglang.bench_one_batch --model-path meta-llama/Meta-Llama-3.1-8B-Instruct --batch 32 --input-len 256 --output-len 32 --load-format dummy --json-model-override-args '{"num_hidden_layers": 1, "num_key_value_heads": 1}'`


## Profile with PyTorch Profiler
- To profile a server
```bash
# set trace path
export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log

# start server
python -m sglang.launch_server --model-path meta-llama/Llama-3.1-8B-Instruct

# send profiling request from client
python -m sglang.bench_serving --backend sglang --model-path meta-llama/Llama-3.1-8B-Instruct --num-prompts 10 --sharegpt-output-len 100 --profile
```
Please make sure that the `SGLANG_TORCH_PROFILER_DIR` should be set at both server and client side, otherwise the trace file cannot be generated correctly . A secure way will be setting `SGLANG_TORCH_PROFILER_DIR` in the `.*rc` file of shell (e.g. `~/.bashrc` for bash shells).

- To profile offline
```bash
export SGLANG_TORCH_PROFILER_DIR=/root/sglang/profile_log
python -m sglang.bench_offline_throughput --model-path meta-llama/Llama-3.1-8B-Instruct --dataset-name random --num-prompts 10 --profile --mem-frac=0.8
```

- View Traces

Trace files can be loaded and visualized from:
1. https://ui.perfetto.dev/ (any browser)
2. chrome://tracing (Chrome browser only)

If browser cannot open trace file due to its large size,
client can generate a small trace file (<100MB) by controlling number of prompts and lengths of prompt outputs.
For example, when profiling a server,
```bash
python -m sglang.bench_serving --backend sglang --model-path meta-llama/Llama-3.1-8B-Instruct --num-prompts 2 --sharegpt-output-len 100 --profile
```
sets the number of prompts to 2 with `--num-prompts` argument and limits the length of output sequences to 100 with `--sharegpt-output-len` argument, which can generate a small trace file for browser to open smoothly.
3. You can use `--python-backtrace=cuda` to see python call stack for all CUDA kernels, as in PyTorch Profiler. (Caveat: this can cause inaccurately long kernel runtimes for CUDA event based timing)
4. For more args please see https://docs.nvidia.com/nsight-systems/UserGuide/index.html

0 comments on commit d7c0b32

Please sign in to comment.