Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for nvidia modelopt fp8 kv cache #3223

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 18 additions & 1 deletion python/sglang/srt/layers/quantization/modelopt_quant.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,12 +5,14 @@

import torch
from torch.nn.parameter import Parameter
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
apply_fp8_linear,
cutlass_fp8_supported,
requantize_with_max_scale,
)

from sglang.srt.layers.attention import AttentionBackend
from sglang.srt.layers.linear import LinearBase, LinearMethodBase
from sglang.srt.layers.parameter import ModelWeightParameter, PerTensorScaleParameter
from sglang.srt.layers.quantization.base_config import (
Expand Down Expand Up @@ -70,7 +72,13 @@ def from_config(cls, config: Dict[str, Any]) -> "ModelOptFp8Config":
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
return ModelOptFp8LinearMethod(self) if isinstance(layer, LinearBase) else None

if isinstance(layer, LinearBase):
return ModelOptFp8LinearMethod(self)
if isinstance(layer, AttentionBackend):
return ModelOptFp8KVCacheMethod(self)

return None

def get_scaled_act_names(self) -> List[str]:
return []
Expand Down Expand Up @@ -171,3 +179,12 @@ def apply(
bias=bias,
cutlass_fp8_supported=self.cutlass_fp8_supported,
)


class ModelOptFp8KVCacheMethod(BaseKVCacheMethod):
"""
Handles loading FP8 kv-cache scaling factors from modelopt quantized checkpoints.
"""

def __init__(self, quant_config: ModelOptFp8Config):
super().__init__(quant_config)
13 changes: 12 additions & 1 deletion python/sglang/srt/model_loader/weight_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -644,9 +644,20 @@ def maybe_remap_kv_scale_name(name: str, params_dict: dict) -> Optional[str]:
return remapped_name

possible_scale_names = [".k_scale", ".v_scale"]
modelopt_scale_names = [".self_attn.k_proj.k_scale", ".self_attn.v_proj.v_scale"]
for scale_name in possible_scale_names:
if name.endswith(scale_name):
remapped_name = name.replace(scale_name, f".attn{scale_name}")
# Check and remap the name based on modelopt scale names
if any(
modelopt_scale_name in name
for modelopt_scale_name in modelopt_scale_names
):
remapped_name = name.replace(
f".self_attn.{scale_name[1]}_proj{scale_name}",
f".self_attn.attn{scale_name}",
)
else:
remapped_name = name.replace(scale_name, f".attn{scale_name}")
if remapped_name not in params_dict:
print_warning_once(
f"Found {scale_name} in the checkpoint (e.g. {name}), "
Expand Down
6 changes: 6 additions & 0 deletions python/sglang/srt/models/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
from sglang.srt.model_loader.weight_utils import (
default_weight_loader,
kv_cache_scales_loader,
maybe_remap_kv_scale_name,
)
from sglang.srt.utils import make_layers
from sglang.utils import get_exception_traceback
Expand Down Expand Up @@ -457,6 +458,11 @@ def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
continue
if name.startswith("model.vision_tower") and name not in params_dict:
continue
# Handle FP8 kv-scale remapping
if "scale" in name:
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue

for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
Expand Down