Skip to content

This is a tutorial material to use Optuna in the TSUBAME3.0 infrastructure (unofficial).

Notifications You must be signed in to change notification settings

toshihikoyanase/tsubame-optuna-example

 
 

Repository files navigation

Optuna Examples for TSUBAME3.0

This is a tutorial material to use Optuna in the TSUBAME3.0 infrastructure (unofficial).

This tutorial describes:

  • Minimum setup to run Optuna.
  • How to launch Optuna storage on an interactive node.
  • How to parallelize single node ML training.
  • How to parallelize multi-node, MPI-based ML training.

Minimum Setup of Optuna in TSUBAME

The following example provides quickstart of Optuna.

Points

  • Optuna can easily installed by pip.
  • sqlite:///example.db is an RDB URL to specify the storage of optimization results. In this case, SQLite is specified.
  • You can use PostgreSQL or in-memory storage instead of SQLite.
$ qrsh -l s_core=1 -l h_rt=00:10:00
$ module load python/3.6.5
$ pip install --user optuna
$ python tsubame-optuna-example/quadratic.py quickstart sqlite:///example.db
$ python tsubame-optuna-example/print_study_history.py quickstart sqlite:///example.db

Launch PostgreSQL in TSUBAME

RDB servers can be used for parallel optimization. In this tutorial, we use PostgreSQL.

$ GROUP=<YOUR_GROUP>

$ qrsh -g $GROUP -l s_core=1 -l h_rt=12:00:00
$ module load singularity/2.6.1
$ singularity build postgres.img docker://postgres

$ mkdir postgres_data
$ singularity run -B postgres_data:/var/lib/postgresql/data postgres.img /docker-entrypoint.sh postgres

The RDB URL is as follows:

$ STORAGE_HOST=<HOST_WHERE_POSTGRES_IS_RUNNING>  # e.g., STORAGE_HOST=r7i7n7-cnode00
$ STORAGE_URL=postgres://postgres@$STORAGE_HOST:5432/

Distributed Optimization for Single Node Learning

Let's parallelize a simple Optuna script that optimizes a quadratic function.

Set up the RDB URL and create a study identifier:

$ STORAGE_HOST=<HOST_WHERE_POSTGRES_IS_RUNNING>
$ STORAGE_URL=postgres://postgres@$STORAGE_HOST:5432/

$ module load python/3.6.5
$ pip install --user psycopg2-binary
$ STUDY_NAME=`~/.local/bin/optuna create-study --storage $STORAGE_URL`

Set up a shell script for qsub command, e.g.:

$ echo "module load python/3.6.5" >> run_quadratic.sh
$ echo "python tsubame-optuna-example/quadratic.py $STUDY_NAME $STORAGE_URL" >> run_quadratic.sh

You can parallelize the optimization just by submitting multiple jobs. For example, the following commands simultaneously run three workers in a study.

$ GROUP=<YOUR_GROUP>

$ qsub -g $GROUP -l s_core=1 run_quadratic.sh
$ qsub -g $GROUP -l s_core=1 run_quadratic.sh
$ qsub -g $GROUP -l s_core=1 run_quadratic.sh

You can list the history of optimization as follows.

$ python tsubame-optuna-example/print_study_history.py $STUDY_NAME $STORAGE_URL

Optimize ChainerMN

See this document.

Optimize TensorFlow + Horovod

See this document.

See Also

About

This is a tutorial material to use Optuna in the TSUBAME3.0 infrastructure (unofficial).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%