-
Notifications
You must be signed in to change notification settings - Fork 1
TODO
minseong edited this page Oct 30, 2020
·
9 revisions
- Hourglass [Paper, ECCV 2016]
- Usage: default (
--num-stack 1 --hourglass-inch 128 --increase-ch 0
)
- Usage: default (
- VGG
- ResNet
- CSPDarknet53
- SPP (Spatial Pyramid Pooling) [Paper, TPAMI 2015]
- Usage:
--neck-pool SPP
(default:--neck-pool None
)
- Usage:
- SAM (Spatial Attention Module) [Paper, ECCV 2018]
- PAN (Path Aggregation Network) [Paper, CVPR 2018]
- CenterNet [Paper, Arxiv 2019]
- Usage: default
- YOLOv3 [Paper, Arxiv 2018]
- FSAF (Feature Selective Anchor-Free) [Paper, 2019 CVPR]
- Deformable Convolution
- CutMix data augmentation
- Mosaic data augmentation
- DropBlock regularization
- Cosine annealing scheduler [Paper, ICLR 2017]
- Random training shapes
- Usage:
--multiscale-flag --multiscale 320 640 64
- Usage:
- Focal Loss
- Usage: default (
--focal-alpha 2.0 --focal-beta 4.0
)
- Usage: default (
- Smooth L1 Loss
- DIoU Loss
- IoU Loss
- Group Normalization
- Mish [Paper, ECCV 2020]
- Usage:
--activation Mish
(default:--activation ReLU
)
- Usage:
- SPP (Spatial Pyramid Pooling) [Paper, TPAMI 2015]
- Usage:
--pool SPP
(default:--pool Max
)
- Usage:
- Soft-NMS [Paper, ICCV 2017]
- Usage:
--nms soft-nms
(default:--nms nms
)
- Usage:
- DIoU-NMS
- normalized (relative) coordinate prediction
- Usage:
--normalized-coord
(The loss weight needs to be modified when using this flag.)
- Usage:
- Resume training
- Single image prediction
- Load pretrained model
- Load pretrained backbone
- Set learning rate per module differently
- Validation durning training
- Clean code
- Loading a torchscript model in c++
- Maintain aspect ratio of the input when evaluation
- Multi-view voting
- Multisclae prediction
- Horizontal Flip prediction
- Deployment with Ainize
- Multivariate Gaussian to generate heat map
- Upgrade to Pytorch 1.7.0