Skip to content
minseong edited this page Oct 30, 2020 · 9 revisions

Backbone

  • Hourglass [Paper, ECCV 2016]
    • Usage: default (--num-stack 1 --hourglass-inch 128 --increase-ch 0)
  • VGG
  • ResNet
  • CSPDarknet53

Neck

Head

Layer

  • Deformable Convolution

BoF (Bag of Freebies)

  • CutMix data augmentation
  • Mosaic data augmentation
  • DropBlock regularization
  • Cosine annealing scheduler [Paper, ICLR 2017]
  • Random training shapes
    • Usage: --multiscale-flag --multiscale 320 640 64
  • Focal Loss
    • Usage: default (--focal-alpha 2.0 --focal-beta 4.0)
  • Smooth L1 Loss
  • DIoU Loss
  • IoU Loss
  • Group Normalization

BoS (Bag of Specials)

  • Mish [Paper, ECCV 2020]
    • Usage: --activation Mish(default: --activation ReLU)
  • SPP (Spatial Pyramid Pooling) [Paper, TPAMI 2015]
    • Usage: --pool SPP (default: --pool Max)
  • Soft-NMS [Paper, ICCV 2017]
    • Usage: --nms soft-nms (default: --nms nms)
  • DIoU-NMS

Implementation

  • normalized (relative) coordinate prediction
    • Usage: --normalized-coord (The loss weight needs to be modified when using this flag.)
  • Resume training
  • Single image prediction
  • Load pretrained model
    • Load pretrained backbone
  • Set learning rate per module differently
  • Validation durning training
  • Clean code
  • Loading a torchscript model in c++
  • Maintain aspect ratio of the input when evaluation
  • Multi-view voting
    • Multisclae prediction
    • Horizontal Flip prediction
  • Deployment with Ainize
  • Multivariate Gaussian to generate heat map
  • Upgrade to Pytorch 1.7.0
Clone this wiki locally