Skip to content

zxxsong/CDA-CS

Repository files navigation

CDA-CS

1. Environment Setup

Python library dependencies:

  • torch>=1.0.1
  • scipy>=0.14.0
  • numpy -v: 1.19.1
  • gensim -v: 3.8.1
  • NLTK -v: 3.5
  • sklearn -v: 1.19.0

2. Original Data

Dataset: Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. A transformer-based approach for source code summarization. ACL 2020, Online, July 5-10, 2020, pages 4998–5007. Association for Computational Linguistics, 2020.

3. Clustering

  • tf_idf_vec.py

    python tf_idf_vec.py 

You can get the TF_IDF vetor of input file, please place this input file into the data folder, and run:

  • K-means.py

    python K-means.py 

In this way, the data that needs to be data augmentation can be obtained.

4. Data Augmentation

  • eda_uad_bert_augment.py

  • eda_uda_bert.py

    python eda_uad_bert_augment.py --input=train.txt --output=augmented.txt --num_aug=20

You can specify your own with --output. You can also specify the number of generated augmented sentences per original sentence using --num_aug.

5. New Dataset

  • split.py

    python split.py
    

You need to split augmented.txt into javadoc.original and code.original_subtoken.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published