-
Notifications
You must be signed in to change notification settings - Fork 804
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
379 additions
and
39 deletions.
There are no files selected for viewing
335 changes: 335 additions & 0 deletions
335
benchmark/kernels/quantization/tuning_block_wise_fp8.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,335 @@ | ||
# Copyright 2025 SGLang Team | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
import argparse | ||
import json | ||
import os | ||
import time | ||
from datetime import datetime | ||
from typing import Any, Dict, List | ||
|
||
import torch | ||
import triton | ||
from tqdm import tqdm | ||
|
||
from sglang.srt.layers.quantization.fp8_kernel import _w8a8_block_fp8_matmul | ||
from sglang.srt.utils import get_device_name | ||
|
||
DTYPE_MAP = { | ||
"float32": torch.float32, | ||
"float16": torch.float16, | ||
"half": torch.half, | ||
"bfloat16": torch.bfloat16, | ||
} | ||
|
||
|
||
def w8a8_block_fp8_matmul( | ||
A: torch.Tensor, | ||
B: torch.Tensor, | ||
As: torch.Tensor, | ||
Bs: torch.Tensor, | ||
block_size: List[int], | ||
config: Dict[str, Any], | ||
output_dtype: torch.dtype = torch.float16, | ||
) -> torch.Tensor: | ||
"""This function performs matrix multiplication with block-wise quantization. | ||
It takes two input tensors `A` and `B` with scales `As` and `Bs`. | ||
The output is returned in the specified `output_dtype`. | ||
Args: | ||
A: The input tensor, e.g., activation. | ||
B: The input tensor, e.g., weight. | ||
As: The per-token-group quantization scale for `A`. | ||
Bs: The per-block quantization scale for `B`. | ||
block_size: The block size for per-block quantization. It should be 2-dim, e.g., [128, 128]. | ||
output_dytpe: The dtype of the returned tensor. | ||
Returns: | ||
torch.Tensor: The result of matmul. | ||
""" | ||
assert len(block_size) == 2 | ||
block_n, block_k = block_size[0], block_size[1] | ||
|
||
assert A.shape[-1] == B.shape[-1] | ||
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous() | ||
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1] | ||
M = A.numel() // A.shape[-1] | ||
|
||
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2 | ||
N, K = B.shape | ||
assert triton.cdiv(N, block_n) == Bs.shape[0] | ||
assert triton.cdiv(K, block_k) == Bs.shape[1] | ||
|
||
C_shape = A.shape[:-1] + (N,) | ||
C = A.new_empty(C_shape, dtype=output_dtype) | ||
|
||
def grid(META): | ||
return ( | ||
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]), | ||
) | ||
|
||
_w8a8_block_fp8_matmul[grid]( | ||
A, | ||
B, | ||
C, | ||
As, | ||
Bs, | ||
M, | ||
N, | ||
K, | ||
block_n, | ||
block_k, | ||
A.stride(-2), | ||
A.stride(-1), | ||
B.stride(1), | ||
B.stride(0), | ||
C.stride(-2), | ||
C.stride(-1), | ||
As.stride(-2), | ||
As.stride(-1), | ||
Bs.stride(1), | ||
Bs.stride(0), | ||
**config, | ||
) | ||
|
||
return C | ||
|
||
|
||
def get_configs_compute_bound(): | ||
configs = [] | ||
for num_stages in [2, 3, 4, 5]: | ||
for block_m in [16, 32, 64, 128, 256]: | ||
for block_k in [64, 128]: | ||
for block_n in [32, 64, 128, 256]: | ||
for num_warps in [4, 8]: | ||
for group_size in [1, 16, 32, 64]: | ||
configs.append( | ||
{ | ||
"BLOCK_SIZE_M": block_m, | ||
"BLOCK_SIZE_N": block_n, | ||
"BLOCK_SIZE_K": block_k, | ||
"GROUP_SIZE_M": group_size, | ||
"num_warps": num_warps, | ||
"num_stages": num_stages, | ||
} | ||
) | ||
return configs | ||
|
||
|
||
def get_weight_shapes(tp_size): | ||
# NOTE(HandH1998): The weight shapes only works for DeepSeek-V3. Modify them, if you tune for another different model. | ||
# cannot TP | ||
total = [ | ||
(512 + 64, 7168), | ||
((128 + 64) * 128, 7168), | ||
(128 * (128 + 128), 512), | ||
(7168, 16384), | ||
(7168, 18432), | ||
] | ||
# N can TP | ||
n_tp = [ | ||
(18432 * 2, 7168), | ||
((128 + 64) * 128, 7168), | ||
(128 * (128 + 128), 512), | ||
(24576, 1536), | ||
(4096, 7168), | ||
] | ||
# K can TP | ||
k_tp = [(7168, 18432), (7168, 16384), (7168, 2048)] | ||
|
||
weight_shapes = [] | ||
for t in total: | ||
weight_shapes.append(t) | ||
for n_t in n_tp: | ||
new_t = (n_t[0] // tp_size, n_t[1]) | ||
weight_shapes.append(new_t) | ||
for k_t in k_tp: | ||
new_t = (k_t[0], k_t[1] // tp_size) | ||
weight_shapes.append(new_t) | ||
return weight_shapes | ||
|
||
|
||
def benchmark_config( | ||
A_fp8, B_fp8, As, Bs, block_size, config, out_dtype=torch.float16, num_iters=10 | ||
): | ||
def run(): | ||
w8a8_block_fp8_matmul(A_fp8, B_fp8, As, Bs, block_size, config, out_dtype) | ||
|
||
torch.cuda.synchronize() | ||
# JIT complication & warmup | ||
for _ in range(5): | ||
run() | ||
torch.cuda.synchronize() | ||
|
||
start_event = torch.cuda.Event(enable_timing=True) | ||
end_event = torch.cuda.Event(enable_timing=True) | ||
|
||
latencies: List[float] = [] | ||
for i in range(num_iters): | ||
torch.cuda.synchronize() | ||
start_event.record() | ||
run() | ||
end_event.record() | ||
end_event.synchronize() | ||
latencies.append(start_event.elapsed_time(end_event)) | ||
avg = sum(latencies) / (num_iters * 10) * 1000 # us | ||
return avg | ||
|
||
|
||
def tune(M, N, K, block_size, out_dtype, search_space): | ||
factor_for_scale = 1e-2 | ||
fp8_info = torch.finfo(torch.float8_e4m3fn) | ||
fp8_max, fp8_min = fp8_info.max, fp8_info.min | ||
|
||
A_fp32 = (torch.rand(M, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max | ||
A_fp8 = A_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) | ||
|
||
B_fp32 = (torch.rand(N, K, dtype=torch.float32, device="cuda") - 0.5) * 2 * fp8_max | ||
B_fp8 = B_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn) | ||
|
||
block_n, block_k = block_size[0], block_size[1] | ||
n_tiles = (N + block_n - 1) // block_n | ||
k_tiles = (K + block_k - 1) // block_k | ||
|
||
As = torch.rand(M, k_tiles, dtype=torch.float32, device="cuda") * factor_for_scale | ||
Bs = ( | ||
torch.rand(n_tiles, k_tiles, dtype=torch.float32, device="cuda") | ||
* factor_for_scale | ||
) | ||
|
||
best_config = None | ||
best_time = float("inf") | ||
for config in tqdm(search_space): | ||
try: | ||
kernel_time = benchmark_config( | ||
A_fp8, | ||
B_fp8, | ||
As, | ||
Bs, | ||
block_size, | ||
config, | ||
out_dtype, | ||
num_iters=10, | ||
) | ||
except triton.runtime.autotuner.OutOfResources: | ||
# Some configurations may be invalid and fail to compile. | ||
continue | ||
|
||
if kernel_time < best_time: | ||
best_time = kernel_time | ||
best_config = config | ||
now = datetime.now() | ||
print(f"{now.ctime()}] Completed tuning for batch_size={M}") | ||
assert best_config is not None | ||
return best_config | ||
|
||
|
||
def save_configs( | ||
N, | ||
K, | ||
block_n, | ||
block_k, | ||
configs, | ||
save_path, | ||
) -> None: | ||
os.makedirs(save_path, exist_ok=True) | ||
device_name = get_device_name().replace(" ", "_") | ||
json_file_name = f"N={N},K={K},device_name={device_name},dtype=fp8_w8a8,block_shape=[{block_n}, {block_k}].json" | ||
|
||
config_file_path = os.path.join(save_path, json_file_name) | ||
print(f"Writing best config to {config_file_path}...") | ||
|
||
with open(config_file_path, "w") as f: | ||
json.dump(configs, f, indent=4) | ||
f.write("\n") | ||
|
||
|
||
def main(args): | ||
print(args) | ||
|
||
block_n = args.block_n | ||
block_k = args.block_k | ||
|
||
tp_size = args.tp_size | ||
assert args.out_dtype in ["float32", "float16", "bfloat16", "half"] | ||
out_dtype = DTYPE_MAP[args.out_dtype] | ||
save_path = args.save_path | ||
|
||
search_space = get_configs_compute_bound() | ||
search_space = [ | ||
config for config in search_space if block_k % config["BLOCK_SIZE_K"] == 0 | ||
] | ||
|
||
if args.batch_size is None: | ||
batch_sizes = [ | ||
1, | ||
2, | ||
4, | ||
8, | ||
16, | ||
24, | ||
32, | ||
48, | ||
64, | ||
96, | ||
128, | ||
256, | ||
512, | ||
1024, | ||
1536, | ||
2048, | ||
3072, | ||
4096, | ||
] | ||
else: | ||
batch_sizes = [args.batch_size] | ||
|
||
print(f"Start tuning over {len(search_space)} configurations...") | ||
|
||
weight_shapes = get_weight_shapes(tp_size) | ||
start = time.time() | ||
for shape in tqdm(weight_shapes): | ||
N, K = shape[0], shape[1] | ||
print(f"Tune for weight shape of `N: {N}, K: {K}`") | ||
benchmark_results = [ | ||
tune(batch_size, N, K, [block_n, block_k], out_dtype, search_space) | ||
for batch_size in batch_sizes | ||
] | ||
best_configs = {M: config for M, config in zip(batch_sizes, benchmark_results)} | ||
save_configs(N, K, block_n, block_k, best_configs, save_path) | ||
|
||
end = time.time() | ||
print(f"Tuning took {end - start:.2f} seconds") | ||
|
||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument("--tp-size", "-tp", type=int, default=8) | ||
parser.add_argument( | ||
"--out-dtype", | ||
type=str, | ||
choices=["float32", "float16", "bfloat16", "half"], | ||
default="float16", | ||
) | ||
parser.add_argument("--block-n", type=int, default=128) | ||
parser.add_argument("--block-k", type=int, default=128) | ||
parser.add_argument("--batch-size", type=int, required=False) | ||
parser.add_argument( | ||
"--save-path", type=str, default="python/sglang/srt/layers/quantization/configs" | ||
) | ||
args = parser.parse_args() | ||
|
||
main(args) |
Oops, something went wrong.